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Abstract

How would the shape of our cities change if there were a permanent increase in working

from home? We study this question using a quantitative model of the Los Angeles metropoli-

tan area featuring local agglomeration externalities and endogenous traffic congestion. We

find three important effects: (1) Jobs move to the core of the city, while residents move to the

periphery. (2) Traffic congestion eases and travel times drop. (3) Average real estate prices

fall, with declines in core locations and increases in the periphery. Workers who are able to

switch to telecommuting enjoy large welfare gains by saving commute time and moving to

more affordable neighborhoods. Workers who continue to work on-site enjoy modest welfare

gains due to lower commute times, improved access to jobs, and the fall in average real estate

prices.
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1 Introduction

The potential savings in overhead costs and commuting time from remote work are significant.1

Technological conditions have been improving steadily for years, yet the fraction of Americans

working from home has remained small. In 2019, just 4.2% of all workers worked from home. In

2020, COVID-19 social distancing requirements forced many companies and organizations to pay

a part of the fixed cost of transition to remote work. Abundant survey evidence suggests that

many now plan to continue remote work at much higher rates even after the pandemic is over. 2

A lasting increase in working from home could have far-ranging consequences for the distribu-

tion of economic activity inside urban areas.3 One of the critical factors driving workers’ location

choices is the need to commute between their job and their residence. Increasing the number of

telecommuters makes this trade-off moot for a significant fraction of the workforce. In this paper,

we quantify the potential impact of this change using a general equilibrium model of internal city

structure. The model features employment, residence, and real estate development choices, as

well as local agglomeration and congestion externalities, and endogenous traffic congestion across

3,846 non-rural census tracts of the Los Angeles-Long Beach combined statistical area.

We calibrate our model to match residence and employment patterns prevalent in Los Angeles

during the period 2012–2016, with an average of 3.7% of workers working from home. We then

conduct a counterfactual exercise in which we gradually increase the fraction of telecommuters

all the way to 33%, which according to Dingel and Neiman (2020), corresponds to the share of

L.A. metro area workers whose jobs could be performed mostly from home. The effects on city

structure over the long run can be broken into three categories.

First, jobs relocate to the core of the urban area, while residents move to the periphery. The

largest driver of this effect is workers who previously had to commute and can now work at home.

They tend to move farther away from the urban core to locations with more affordable houses.

This increases demand for real estate in peripheral locations and lowers demand in the core,

pushing jobs from the suburbs into more central locations.

Second, average commuting times fall, while commuting distances increase. Since fewer work-

ers commute, traffic congestion eases, which increases average speed of travel. Commuters take

advantage of this and also move farther away from their workplaces to live in locations with lower

real estate prices.

1Mas and Pallais (2020) provide an overview of the current state of research in telecommuting. Bloom, Liang,
Roberts, and Ying (2015) present experimental evidence that telework increases employee work satisfaction without
necessarily reducing their productivity.

2A May 2020 survey by Barrero, Bloom, and Davis (2020) finds that 16.6% of paid work days will be done
from home after the pandemic ends, compared to 5.5% in 2019. Results of a survey by Bartik, Cullen, Glaeser,
Luca, and Stanton (2020) also indicate that remote work will be much more common after the pandemic.

3A study by Upwork in October 2020 finds that since the beginning of the pandemic 2% of survey participants
had already moved residences because of the ability to work at home and another 6% planned to do so (Ozimek,
2020).
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Third, average real estate prices fall. As many workers move into distant suburbs, prices in

the periphery increase. However, these price increases are more than offset by the decline of

prices in the core. This decline is driven by two factors. The first is the decline in demand for

residential real estate in core locations. The second is the reduced demand for on-site office space

from workers who now telecommute. In the counterfactual where 33% of workers telecommute,

average house prices fall by nearly 6%.

In addition to these three broad trends, our quantitative model predicts considerable hetero-

geneity in outcomes that is not accounted for by the simple core-periphery continuum. Within the

core, locations with high productivity gain jobs while less productive locations lose them. At all

distances from the center, locations with better exogenous residential amenities either gain more

or lose fewer residents than less attractive equi-distant locations. Overall, the single monocentric

dimension of distance from the center only accounts for about half of all variation in predicted

outcomes.

The shift to telecommuting implies changes in the income both of workers and the owners

of real estate. On the one hand, labor productivity is pushed upward as jobs leave peripheral

areas, and employment in the most productive tracts increases. Productivity receives a further

boost from the accompanying increase in spatial agglomeration externalities. Simultaneously,

labor productivity is pushed downward because more employees work at home and teleworkers do

not contribute to agglomeration. In our quantitative exercise, these two effects offset each other

almost completely, leading to very small increases in average wages. At the same time, changes

in the spatial distribution of real estate demand and the reduced need for office space lead to

lower real estate prices and thus a reduction in the income earned by landowners and property

developers.

Our results conform fundamentally with previous theoretical findings by, for example, Safirova

(2003), Rhee (2008), and Larson and Zhao (2017). Recent work by Lennox (2020) explores the

effects of working from home in an Australian context using a quantitative spatial equilibrium

model. A related study of ours, Delventhal and Parkhomenko (2020), extends the analysis to the

entire U.S. and multiple types of telecommuters.

This paper also follows a number of recent efforts to assess the impact of urban policies and

transport infrastructure on city structure, such as those by Ahlfeldt, Redding, Sturm, and Wolf

(2015), Severen (2019), Tsivanidis (2019), Owens, Rossi-Hansberg, and Sarte (2020), and Anas

(2020). Our paper uses a similar framework to assess the impact of a change to the underlying

technology of production on urban structure.

The remainder of the paper is organized as follows. Section 2 describes the model. Section

3 provides an overview of how we calibrate the model. Section 4 describes and discusses the

counterfactual exercises. Section 5 concludes.
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2 Model

Consider an urban area with I discrete locations, each populated by workers, firms, and

floorspace developers. The total employment of the urban area is fixed and normalized to 1.

Workers supply their labor to firms and consume residential floor space and a numeraire con-

sumption good. Workers suffer disutility from time spent in commuting between home and work,

and this time depends endogenously on aggregate traffic volume. Their choice of residence and

employment locations depends on the commuting time, wages at the place of employment, housing

costs and amenities at the place of residence, and idiosyncratic location preferences. Residential

amenities depend on agglomeration spillovers, which are increasing in the residential density of

nearby locations. Firms use labor and commercial floorspace to produce the consumption good,

which is traded costlessly inside the urban area. Firms’ total factor productivity depends on

agglomeration spillovers, which are increasing in the density of employment in nearby locations.

Developers use land and the numeraire to produce floorspace, which can be put to residential or

commercial use. The supply of floor space in each location is restricted by zoning regulations that

limit commercial development and overall density.

We introduce work from home by proposing a second type of worker–the telecommuter.

Telecommuters only come to their worksite a small fraction of workdays and thus suffer much

less disutility from commuting. On the days that they are not in the office, they do not use com-

mercial floorspace and instead produce output using “home office” floorspace in their residence

location. Working from home uses floorspace less intensively than on-site work, has a different

total factor productivity, and neither contributes to nor benefits from agglomeration spillovers.

This model is similar in many respects to Ahlfeldt, Redding, Sturm, and Wolf (2015). The

remainder of the section presents the model and Appendix B provides additional details.

2.1 Workers

2.1.1 Commuters and Telecommuters

Before choosing where to work and where to live, workers draw their commuter type. With

probability ψ ≥ 0, a worker becomes a “telecommuter.” With probability 1 − ψ, the worker

becomes a “commuter.” The two types differ in the fraction of workdays they commute to work,

θ. Commuters must come daily and therefore have θ = 1, while telecommuters have θ = θT < 1.
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2.1.2 Preferences

A worker n who resides in location i ∈ {1, ..., I}, works in location j ∈ {1, ..., I}, and has to

commute from i to j a fraction θ of time, enjoys utility

Uijn(θ) =
zijn
dij(θ)

(
c

1− γ

)1−γ (
h

γ

)γ
, (1)

where zijn represents an idiosyncratic preference shock for the pair of locations i and j, and dij(θ)

is the disutility from commuting given by dij(θ) = (1 − θ) + θeκtij . Individuals consume c units

of the final good and h units of housing. The share of housing in expenditures is given by γ,

and consumption choices are subject to the budget constraint (1 + τ)wij(θ) = c + qih. In this

constraint, wij(θ) is the wage earned by a worker who commutes from i to j a fraction θ of days,

and qi is the price of residential floorspace in location i. In addition to wages, workers also earn

proportional transfers, τwij(θ), which distribute income from land and the consumption good sold

to real estate developers equally among all city workers.

Idiosyncratic shocks zijn are drawn from a Frèchet distribution with c.d.f. Fz(z) = e−z
−ε

. The

indirect utility of worker n who lives in location i and works in location j is given by uijn(θ) =

zijnvij(θ), where

vij(θ) ≡
XiEjwij(θ)

dij(θ)q
γ
i

(2)

is the utility obtained by a worker, net of the preference shock. In the above formulation, Xi is

the average amenity derived from living in location i, and Ej is the average amenity derived from

working in location j.

Commuting time is a function of total vehicle miles traveled and road capacity in the city:

tij = tij(VMT,Cap). We assume that the capacity is fixed and the elasticity of time on each link

(i, j) with respect to total volume is a constant εV . Appendix E provides more details.

2.1.3 Location Choices

Optimal choices imply that the probability that a worker with a given θ chooses to live in

location i and work in location j is

πij(θ) =
(XiEjwij(θ))

ε (dij(θ)q
γ
i )−ε∑

r∈I

∑
s∈I

(XrEswrs(θ))
ε (drs(θ)q

γ
r )−ε

. (3)
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As a result, the equilibrium residential population of workers with a given θ in location i, and the

equilibrium employment in location j are given by

NRi(θ) =
I∑
j=1

πij(θ) and NWj(θ) =
I∑
i=1

πij(θ). (4)

Finally, total residential population is NRi = (1−ψ)NRi(1) +ψNRi(θ
T ), and total employment is

NWj = (1− ψ)NWj(1) + ψNWj(θ
T ).

2.2 Firms

2.2.1 Production

In each location, there is a representative firm which hires both on-site and remote labor and

produces a homogeneous consumption good which is traded costlessly across locations. The total

output of the firm in location j is Yj = Y C
j + Y T

j , where Y C
j and Y T

j are the amounts produced

on-site and remotely, respectively. The on-site production function is given by

Y C
j = Aj

(
NC
Wj

)α (
HC
Wj

)1−α
, (5)

where NC
Wj = (1 − ψ)NWj(1) + θTψNWj(θ

T ) is the supply of on-site labor, HC
Wj is commercial

floorspace, and α is the labor share. The remote production function is also Cobb-Douglas and it

combines workers from different locations as follows:

Y T
j = νAj

∑
i∈I

(
NT
ij

)αT (HT
ij

)1−αT . (6)

In this specification, NT
ij = (1− θT )ψπij(θ

T ) is the supply of remote labor of telecommuters who

reside in location i and work for a firm in location j, whereas HT
ij is the amount of home office

space the firm rents on behalf of these workers in the place of their residence.4 Parameter ν is the

productivity gap between on-site and remote work, common to all workers and firms. We let the

labor share in remote production, αT , to be different from the labor share in on-site production.5

2.2.2 Wages

Firms take wages and floorspace prices as given, and choose the amount of on-site labor,

telecommuting labor, and floorspace that maximize their profits. Equilibrium payments for on-

4We assume that the firm rents the floorspace that remote workers need in order to work from home, however
this specification is isomorphic to the one in which the firm only pays for labor services of a telecommuter and the
telecommuter uses his labor income to rent additional floorspace in his house.

5One may expect that α < αT because telecommuters tend to work in jobs that require little floorspace. While
we do not impose this inequality in our theoretical analysis, it holds in our calibration.
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site work at location j and remote work for a firm in location j while living in location i are,

respectively,

wCj = αA
1
α
j

(
1− α
qj

) 1−α
α

and wTij = αT (νAj)
1
αT

(
1− αT
qi

) 1−αT
αT

, (7)

where qj is the local price of floorspace. The take-home wage of a worker with a given θ is the

weighted average of payments to his commuting labor and his telecommuting labor: wij(θ) =

θwCj + (1− θ)wTij.6

2.3 Developers

There is a large number of perfectly competitive floorspace developers operating in each loca-

tion. Floorspace is produced using the following technology:

Hi = K1−η
i (φi(Hi)Li)

η , (8)

where Li ≤ Λi and Ki are the amounts of land and the final good used to produce floorspace,

and η is the share of land in production. Λi is the exogenous supply of buildable land, and

in equilibrium it is optimal for developers to use all buildable land, i.e., Li = Λi. Function

φi(Hi) ≡ 1 − Hi
H̄i

determines the local land-augmenting productivity of floorspace developers.7

Parameter H̄i determines the density limit in tract i. When Hi approaches H̄i, φi(Hi) approaches

zero. As a result, it becomes very costly to build due to regulatory or political barriers, such as

zoning, floor-to-area ratios, or local opposition to development.

Floorspace has three uses: commercial, residential, and home offices. Commercial floorspace

can be purchased at price qWj per square foot. Residential and home office floorspace is located in

the same structure (e.g., a house) and each can be bought at price qRi. Developers sell floorspace

at price q̄i ≡ min {qRi, qWi} to either residential or commercial users. However, the effective price

that residents or firms pay for floorspace may differ from q̄i due to zoning restrictions. The wedge

between prices for residential and commercial floorspace is denoted by parameter ξi > 0. If ξi > 1,

regulations increase the relative cost of supplying commercial floorspace. Thus, the relationship

between residential and commercial floorspace prices is8

qWi = ξiqRi. (9)

The demand for commercial floorspace (HC
Wj) and home office floorspace (HT

ij) arises from

6Note that the wage of a commuter does not depend on her location of residence i. However, the wage of a
telecommuter depends on his location of residence i because production uses home-office floorspace.

7This function was also used in Favilukis, Mabille, and Van Nieuwerburgh (2019) to model density limits.
8This equality does not need to hold if the supply of commercial or residential floorspace in a given tract is

zero. In our quantitative model, however, these corner cases do not occur.
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profit-maximizing choices of firms. The demand for residential floorspace (HRi) comes from utility-

maximizing choices of residents. Equilibrium selling price q̄i equalizes the demand and the supply

of floorspace:

HC
Wj +

∑
i∈I

HT
ij +HRj = Hi. (10)

Appendix B provides more details.

2.4 Externalities

Local total factor productivity and residential amenities depend on density. In particular,

the productivity in location j is determined by an exogenous component, aj, and an endogenous

component that is increasing in the density of on-site labor in this location, as well as every other

locations s, weighted inversely by the travel time from j to s:

Aj = aj

[
I∑
s=1

e−δtjs
NC
Ws

Λs

]λ
. (11)

Parameter λ > 0 measures the elasticity of productivity with respect to the density of workers,

while parameter δ accounts for the decay of spillovers from other locations. Productive external-

ities may include learning, knowledge spillovers, and networking that occur as a result of face-

to-face interactions between workers. Hence, we assume that only commuters and telecommuters

who are on-site on a given day contribute to these externalities.

Similarly, the residential amenity in location i is determined by an exogenous component, xj,

and an endogenous component that depends on the density of residence in every other location,

weighted inversely by the travel time to that location from i:

Xi = xi

[
I∑
s=1

e−ρtis
NRs

Λs

]χ
. (12)

Parameter χ > 0 measures the elasticity of amenities with respect to the density of residents,

and ρ is the decay of amenity spillovers. The positive relationship between density and amenities

represents, in reduced form, the greater propensity for both public amenities, such as parks and

schools, and private amenities, such as retail shopping, to locate in proximity to greater concen-

trations of potential users and customers. All types of workers, commuters and telecommuters,

contribute equally to amenity externalities at their location of residence.9

9It would also be possible that telecommuters, by spending more time in the area of their residence, contribute
more to local amenities than commuters.
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2.5 Equilibrium

An equilibrium consists of residential and workplace employment of commuters and telecom-

muters, NRi(θ) and NWj(θ); wages of commuters and telecommuters, wCj and wTij; residential and

commercial floorspace prices, qRi and qWj; local productivities, Aj; and local amenities, Xj; such

that equations (4), (7), (9), (10), (11), and (12) are satisfied.

3 Data and Calibration

The Los Angeles-Long Beach Combined Statistical Area had a total population of 18.7 million

in 2018, distributed across a total land area of 88,000 square kilometers (U.S. Census Bureau,

2020). It comprises five counties (Los Angeles, Orange, Riverside, San Bernardino, and Ventura)

and 3,917 census tracts. To exclude nearly empty desert and mountain tracts with large land

areas, we exclude any tracts that are below the 2.5th percentile of both residential and employment

density. This excludes less than 1% of workers and leaves us with 3,846 tracts. We focus on the

five years between 2012 and 2016. To construct tract-level data on the residential and workplace

employment, we use the LEHD Origin-Destination Employment Statistics (LODES) data for years

2012 to 2016. Tract-level wages are constructed using the data from the American Community

Survey (ACS) and the Census Transportation Planning Products (CTPP). We also use CTPP to

estimate bilateral commuting times. Finally, prices of residential and commercial floorspace come

from the universe of transactions provided by DataQuick. Please refer to Appendix A for more

details on the data.

The baseline probability of telecommuting, ψ, is set to 0.0374. This number corresponds to the

fraction of workers who report that they primarily work from home in the 2012–2016 individual-

level data from the American Community Survey for the Los Angeles-Long Beach CSA. The

fraction of time that telecommuters spend at an on-site workplace, θ, is set to 0.114, based on a

survey questionnaire of Global Work-from-Home Experience Survey (Global Workplace Analytics,

2020).10 The elasticity of commuting time with respect to traffic volume, εV , is set to 0.2, following

Small and Verhoef (2007). In Appendix section E we discuss robustness of results to different

values of εV .

We calibrate the relative TFP of telecommuters, ν, so that the wages of commuters and

telecommuters are identical in the benchmark economy.11 The floorspace share of telecommuters,

10The survey asked the number of days an employee worked from home per week. We classify workers as
telecommuters if they work from home three or more days per week. According to the survey, 9% of workers
work from home five days per week, 2% do this four days a week, and 3% work from home three days per week.
Based on these numbers, we calculate the fraction of time spent on-site as 1− [0.09× (5/5) + 0.02× (4/5) + 0.03×
(3/5)]/[0.09 + 0.02 + 0.03] = 0.114.

11Our empirical analysis finds that wages of telecommuters are higher than those of commuters, however, the
wage premium disappears once we control for age, education, industry, and occupation. It is also unclear how the
wage gap between the two types will change if many more workers start working remotely.
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αT , is calibrated so that, on average, the home office of a telecommuter constitutes 20% of her

house.12 The calibrated values of ν and αT are equal to 0.71 and 0.934, respectively.

We borrow values for the remaining city-wide parameters from previous studies. The share

of housing in expenditures, γ, is equal to 0.25, following Davis and Ortalo-Magné (2011). The

labor share in production, α, is 0.8 (Valentinyi and Herrendorf, 2008), and the land share in

construction, η, is 0.25 (Combes, Duranton, and Gobillon, 2018). Parameters that determine

the strength of agglomeration forces and decay speed for productivity and residential amenities

are borrowed from Ahlfeldt, Redding, Sturm, and Wolf (2015). In particular, we set λ = 0.071,

δ = 0.3617, χ = 1.0326, and ρ = 0.7595.13 We also take the variance of the Frèchet shocks and the

elasticity of utility with respect to commuting from Ahlfeldt, Redding, Sturm, and Wolf (2015),

and set ε = 6.6491 and κ = 0.0105.14

Besides city-wide parameters, in order to solve the model, we also need to know vectors of

structural residuals: E, x, a, ξ, and H̄. The model provides equilibrium relationships that allow

us to identify these residuals from observed prices and quantities uniquely. Appendix C provides

more details on how we back out these residuals using the data.

4 Counterfactuals

The COVID-19 outbreak in early 2020 has forced many workers to work from home. While

before the epidemic around 4% of workers in Los Angeles metropolitan area worked from home,

Dingel and Neiman (2020) estimate that as many as 33% of workers in Los Angeles have jobs that

can be done remotely.

In this section, we study how a permanent reallocation from working on site to working at

home would affect the urban economy of Los Angeles. We simulate this increase by permanently

raising the probability of telecommuting, ψ. The maximum permanent increase we consider is all

the way to 0.33. We also calculate results for a range of intermediate values.

As the number of teleworkers increases, both firms and workers change their locations within

the urban area. In response, the city also experiences endogenous adjustments in the supply

of commercial and residential floorspace, as well as commuting speeds. In what follows, we

12The average house size was 2,430 square feet in 2010, according to Muresan (2016). Home-based teleworkers
have, on average, 500 square feet larger homes than other workers (Nilles, 2000). Hence, telecommuters’ houses are
about 20% larger. This gap may reflect differences in income, location within a city, and the need for designated
workspace within a house. All of these factors are also present in our model.

13Note that the parameter χ in our model corresponds to the product of the variance of the Frèchet shocks and
the elasticity of residential amenities with respect to density in Ahlfeldt, Redding, Sturm, and Wolf (2015).

14These two parameters, as well as the four parameters that determine amenity and productivity spillovers,
were estimated for the city of Berlin, and we leave the estimation for Los Angeles for future work. Nonetheless,
similar structural models with parameters estimated for other cities are characterized by similar magnitudes of
productivity agglomeration effects and spatial spillovers. At the same time, the estimates of amenity agglomeration
effects and spatial spillovers differ substantially across studies. See Berkes and Gaetani (2019),Tsivanidis (2019),
and Heblich, Redding, and Sturm (2020), among others.
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describe the effects on the spatial allocation of workers and firms, floorspace prices, commuting

patterns, wages and land prices. Then we discuss the drivers of counterfactual changes, the role

of endogenous productivity and amenities, and welfare effects.

4.1 Spatial Reallocation

When workers are freed from the need to commute to their workplace, they tend to choose

residences farther from the urban core in locations with more affordable housing. As the share of

telecommuters rises, this drives a reallocation of residents from the core of the urban area towards

the periphery.15 The top panel of Figure 1 maps the predicted reallocation of residents when the

fraction of telecommuters rises to 33%.

As residents decentralize, employment centralizes. There are three main factors driving this

reallocation. First, the flipside of a telecommuter being able to access jobs even if they live

far away, is that employers can access the labor of telecommuters even if they are located far

from where they live. Therefore, employment shifts from locations which are less productive

but closer to workers’ residences, toward locations closer to the core which have higher exogenous

productivity and benefit from greater productivity spillovers. Second, the reallocation of residents

increases demand for floorspace in peripheral locations and reduces it in the core, creating a

cost incentive for jobs to move in the opposite direction. Third, the fact that telecommuters

require less on-site office space further increases the cost-efficiency of firms in core locations with

high productivity but high real estate prices. The middle panel of Figure 1 maps the predicted

reallocation of jobs.16

The net effect of these reallocations is to reduce the price of floorspace in core locations and

increase it in the periphery. The bottom panel of Figure 1 maps predicted changes in real estate

prices when the fraction of telecommuters rises to 33%.

15Althoff, Eckert, Ganapati, and Walsh (2020) find that months after the COVID-19 pandemic saw a reallocation
of residents from the densest locations to the least dense locations in the U.S.

16For a breakdown of residence and job changes by worker type, see Appendix D.
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Figure 1: Changes in residence, jobs, and real estate prices
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4.2 Commuting

A shift to telecommuting brings large benefits to those workers who do not have to come to

the office every day anymore and therefore suffer less disutility from commuting. However, those

who still have to commute benefit too, as traffic congestion drops and commuting speeds increase.

As the upper left panel of Figure 2 shows, with lighter traffic and faster speeds, the average

commuting time for those who still commute falls from 31 to 30 minutes. At the same time, the

average commute distance for commuters increases by nearly 1 km, as they relocate farther away.

This can be seen in the upper right panel. However, the total amount of kilometers traveled falls

by 29%, which suggests possible environmental benefits of the increase in telecommuting. The

magnitudes of these effects depend importantly on the elasticity of speed with respect to traffic

volume, εV . Simulations for alternative values of εV can be found in Appendix E.

Figure 2: Commuting, wages, and prices
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4.3 Wages and Floorspace Prices

When the share of telecommuters increases, two opposite forces influence average wages. On

the one hand, jobs are being reallocated to more productive locations that also benefit from

agglomeration externalities. On the other hand, a larger fraction of the workforce does not

contribute to these externalities. In our calibration, these two forces almost perfectly balance

each other. As can be seen in the lower left panel of Figure 2, a full increase in the fraction of

telecommuters to 33% leads to a 0.3% increase in average wages.

As can also be seen in the lower left panel of Figure 2, an increasing share of telecommuters is

decisive for the average price of land. Residents reallocate themselves to less expensive locations,

and firms with more telecommuters need less office space. If the fraction of telecommuters rose

to 33%, the income of landowners would fall by 8%.

The lower right panel of Figure 2 shows that the value of both types of real estate falls by

about 6%.17 The relative decreases in residential and commercial prices depend on the fraction

of telecommuters. When the change in the amount of telecommuting is relatively small, the

decrease in residential prices is somewhat larger. After the fraction of telecommuters passes 28%,

commercial prices are hit harder.

4.4 Accounting for Counterfactual Changes

What are the main factors which drive these results? We find that a substantial part of the

variation in predicted changes is accounted for by simple measures of centrality such as distance

to cental business district. In this way, there is substantial overlap between our predictions and

the predictions that could be obtained from a uni-dimensional “monocentric city” model. We also

find that there is significant heterogeneity in predicted outcomes between tracts that are roughly

the same distance from downtown L.A. This additional heterogeneity reflects the differences in

exogenous local characteristics and transport network connections which our quantitative model

allows us to account for.

This heterogeneity is highlighted in the three panels of Figure 3. Each panel plots predicted

changes on the y-axis against the land-area weighted centrality rank of a tract on the x-axis–a

centrality rank of 0 represents the most distant tract, a centrality rank of 1 represents the tract

closest to the center of the metropolitan area.18 In the middle panel, we see that while there is

an unambiguous prediction of job losses in the periphery, roughly equal numbers of tracts gain

and lose jobs from the 60th percentile and higher of centrality. In the left panel, we see that

while peripheral tracts are projected to gain residents, predictions are much more ambiguous

17In this model, residential and commercial prices in a given location move one to one; see equation (9). However,
changes in average prices of each type may differ due to changes in the supply of each type of real estate.

18We calculate an eigenvector centrality from the I × I matrix of inverse commuting disutilities. This measure
is highly correlated with both straight-line distance from downtown Los Angeles, and travel time from downtown
Los Angeles–the correlation is higher than 0.97 in both cases. More details can be found in Appendix F.
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Figure 3: Quantiles of Centrality and Counterfactual Reallocations
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Note: The x-axis is scaled to quantiles of the centrality measure, weighted by land area. The size of each circle is

proportional the the land area of the tract.

once the centrality is higher than the 60th percentile. In the right panel, we see that real estate

price changes fall systematically as we move towards the center of the city. All three panels show

substantial disparities in predicted outcomes between tracts of very similar centralities.19 What

can account for this variation?

To help answer this question, we perform a Shapley-style decomposition of the variation in

predicted outcomes between centrality, exogenous local productivity and exogenous local employ-

ment and residential amenities.20 We find that distance from the center can account for at most

60% of the variation in changes in floorspace prices, around 40% of the variation in changes in

employment, and 50% of the variation in changes in residence across space. Two of the key

takeaways from this exercise are that (1) locations with higher exogenous residential amenities

have bigger resident gains and smaller resident losses, all else equal; and (2) locations with higher

exogenous productivity have bigger job gains and smaller job losses, all else equal.21

4.5 Role of Endogenous Productivities, Amenities, and Congestion

In the baseline counterfactual we assume that local productivities and amenities are endoge-

nous. We also assume that commuting speeds fall as total vehicle miles traveled goes down, and

that these increased speeds also mean that spillovers have a broader reach.

What is the role of these specification choices in driving our results? We turn each of them off

19We can also see this variation between equidistant tracts if we return to look at Figure 1. It is perhaps most
striking in the middle panel of Figure 1, where we can see that one set of tracts which are close to downtown
experience strong gains in employment, while other tracts, equally close or even closer to downtown, lose jobs. The
bottom panel of Figure 1 shows large differences in the size of real estate price reductions between different tracts
close to downtown.

20Full details of this decomposition are provided in Appendix F.
21Maps of structural residuals are shown in Figure 4 in Appendix C.
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and on in turn, and show the results in Table 1. Column (6), when all margins are turned “on,”

corresponds to the benchmark scenario. It turns out that in none of these permutations are our

main results significantly altered. Commuting times go down, floorspace prices fall, and overall

welfare goes up, all in roughly the same proportions, no matter which set of assumptions is turned

on. There are, however, some variations which illustrate the role of different model mechanisms

in shaping the results.

Table 1: Breakdown of results

Engogenous productivities: no no yes yes yes yes
Endogenous amenities: no yes no yes yes yes

Endogenous congestion: no no no no yes yes
Spillovers affected by congestion: n/a n/a n/a n/a no yes

(1) (2) (3) (4) (5) (6)

Wages of all workers, % chg 1.77 1.79 -0.39 -0.41 -0.37 0.31
Wages of commuters, % chg 2.66 2.80 0.34 0.45 0.51 1.21
Wages of telecommuters, % chg -0.13 -0.38 -1.98 -2.26 -2.26 -1.61
Residential floorspace prices, % chg -4.37 -5.03 -5.75 -6.16 -6.23 -5.63
Commercial floorspace prices, % chg -6.43 -7.39 -6.14 -6.86 -6.97 -6.41

Time spent commuting, all workers, % chg -31.42 -30.69 -31.46 -30.80 -32.23 -32.13
Time spent commuting, commuters, % chg -1.46 -0.43 -1.52 -0.57 -2.63 -2.49
Distance traveled, all workers, % chg -31.91 -30.69 -31.96 -30.85 -28.96 -28.82
Distance traveled, commuters, % chg -2.18 -0.42 -2.24 -0.65 2.06 2.27

Welfare by source, % chg
consumption 2.30 2.52 0.45 0.55 0.64 1.17

goods only 0.84 0.85 -1.26 -1.29 -1.24 -0.57
housing only 4.75 5.70 3.95 4.58 4.73 4.79

+ commuting 11.71 11.54 9.74 9.46 10.02 10.56
+ amenities 11.90 14.38 10.16 12.23 12.80 14.15
+ Frèchet shocks 17.97 19.67 15.28 16.79 17.14 18.91

Welfare by commuter type, % chg
commuter 1.94 2.06 -0.48 -0.41 0.82 2.24
telecommuter -3.33 -1.69 -5.52 -4.06 -3.94 -2.47

Note: Columns (1)–(6) present results from specifications with different combinations of engogenous productivities,

amenities and congestion, and whether spillovers increases when traffic congestion goes down. Each column reports

results of a counterfactual experiment with an increase of the fraction of telecommuters to 0.33.

First, let us compare columns (1) and (2) of Table 1 with columns (3) and (4). If local pro-

ductivities do not adjust endogenously, wages increase. This is primarily because telecommuters

do not contribute to productivity spillovers. If these adjust, the locations which lose in-person

workers–nearly every location–see a fall in productivity. As a result, average wages fall.

Second, let us compare columns (1) and (3) with columns (2) and (4). If residential amenities

do not adjust, there is a bigger reduction in travel times and distances. This is because allowing

amenities to follow telecommuters out to the periphery increases the attractiveness of peripheral
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locations for regular commuters, making them willing to put up with longer commutes.

Finally, let us compare columns (5) and (6) with column (4). We see that endogenous conges-

tion leads to larger reductions in time spent commuting. It also flips small reductions in distance

traveled into small increases–increased speeds allow workers to travel further while spending less

time on the road. Comparing columns (5) and (6), we can see that allowing the reach of spillovers

to increase when travel speeds go down gives a small but significant boost to wages.

4.6 Welfare

The lower half of Table 1 shows that the increase in telecommuting to 33% of workforce results

in significant welfare gains, which we measure as consumption-equivalent changes in expected

utility (see Appendix section B.3 for details). We find that reduced commuting is the single biggest

driver of welfare improvements, even when traffic congestion remains fixed at the benchmark

level. Focusing on column (6): when commuting is accounted for in addition to the 1.2% gain

from consumption, welfare gains rise by over 9 percentage points. After this, improved access

to amenities adds another 3.6 percentage points, while workers’ improved ability to fulfill their

idiosyncratic preferences contributes less than 5 percentage points.

One important driver of welfare gains for commuters is access to jobs. In large, sprawled and

congested cities, such as Los Angeles, good jobs are often inaccessible for households who live on

the periphery. To study how a shift to telecommuting impacts job access, we calculate commuter

market access for each tract as CMAi =
∑

j(wje
−κtij)ε. We find that an increase in the fraction of

telecommuters improves average job access for those who keep commuting by 16%, largely thanks

to lower traffic congestion. We also find that the elasticity of floorspace prices with respect to

market access at the tract level falls, meaning that places with better access to jobs command a

lower price premium.22

The utility of the average telecommuter is significantly higher than that of the average com-

muter, due to reduced disutility from commuting, access to lower-cost housing, and access to

better-paying jobs and amenities. As a result, the shift of workers from commuting to telecom-

muting is an important source of the welfare increases. Workers who remain commuters or telecom-

muters, see their welfare change only marginally. Commuters who continue to commute benefit

from reduced time commuting, access to lower-cost housing, and access to better-paying jobs and

amenities, and see their welfare rise by more than 2%. At the same time, telecommuters who were

already telecommuting do not benefit from the increase in their mode of work. On the contrary,

they need to compete with an increasing fraction of the workforce for residence and job sites that

were previously accessible only to them. Their welfare falls by about 2.5%.

22Further details of these calculations as well as other results can be found in Appendix D.
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5 Conclusion

In this paper we used a detailed quantitative model of internal city structure to study what

would happen in Los Angeles if telecommuting becomes popular over the long run. We find

substantial changes to the city structure, wages and real estate prices, and commuting patterns.

We also find that more widespread telecommuting could bring significant welfare benefits.

Our analysis necessarily omits several important channels which could dampen or amplify our

findings. First, in our model all workers are ex-ante identical and have the same chances of being

able to telecommute. In reality, the ability to telecommute is correlated with occupation, industry

and income. Accounting for this would likely have two effects. First, it would center the large

shifts in jobs and residence even more on the high-density center-city locations where the share of

skilled, telecommute-ready workers is likely to be highest. Second, there would be more downward

pressure on the average wage. This is because these center-city locations have higher than average

local productivity. If these locations lose proportionally more in-person workers, their reduction

in productivity from spillovers will be greater, as will the impact on aggregate average wages.

It is also likely that different skill levels of workers differ in their contribution to productivity

externalities.23 If higher skilled workers are also more likely to telecommute, the effect of this

detail would be similar to the previous one: additional downward pressure on wages.

Second, we calibrated the productivity gap between commuters and telecommuters to ensure

that their average wages are the same in the benchmark economy, and assume that this parameter

remains constant in the counterfactual. We also assume that telecommuters do not contribute at

all to productivity spillovers. However, as telecommuting becomes more widespread, technological

changes might increase the relative productivity of telecommuters and allow them to contribute

more to productivity spillovers even without literal face-to-face interaction. This would put up-

ward pressure on wages, as we find in a related paper of ours, Delventhal and Parkhomenko

(2020).

Third, we do not take account of non-commuting travel.24 If we did, we would probably

find an increase in local traffic congestion in the peripheral areas that telecommuters relocate to,

alongside the reduction in congestion along the main commuting arteries. This would mitigate

gains from moving to the periphery and lead to less decentralization overall. We also do not

distinguish between transportation modes in the model. The reduction in congestion brought by

more telecommuting could be offset if some transit users start commuting by car.

Finally, we do not allow migration in and out of the city. In practice, as some workers gain

the ability to work remotely, they may choose to leave Los Angeles and move to a different city,

or even a different country. On the other hand, telecommuters from elsewhere may move into Los

23This is a finding of, e.g., Rossi-Hansberg, Sarte, and Schwartzman (2019).
24Couture, Duranton, and Turner (2018) estimate that work-related trips account for only 40% of vehicle miles

traveled in the U.S.
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Angeles to enjoy local amenities. Indeed, this is what we find in Delventhal and Parkhomenko

(2020), which expands the scope of analysis to include the entire U.S.

One more caveat is recommendable in interpreting our predictions for welfare. We model

telecommuting as a fact imposed exogenously on workers. They love it because they commute

less. Most welfare gains come through this channel. In reality, some workers may dislike remote

work. If telecommuting were a choice in which workers balance the benefits against their individual

dislike, welfare gains would almost surely be smaller than what we report.
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Davis, M. A., and F. Ortalo-Magné (2011): “Household expenditures, wages, rents,” Review

of Economic Dynamics, 14(2), 248 – 261.

Delventhal, M. J., and A. Parkhomenko (2020): “Spatial Implications of Telecommuting,”

Working paper.

Dingel, J. I., and B. Neiman (2020): “How Many Jobs Can be Done at Home?,” Working

Paper 26948, National Bureau of Economic Research.

Favilukis, J., P. Mabille, and S. Van Nieuwerburgh (2019): “Affordable Housing and

City Welfare,” Working Paper 25906, National Bureau of Economic Research.

Global Workplace Analytics (2020): Work From Home Experience Survey, 2020. Global

Workplace Analytics.

Heblich, S., S. J. Redding, and D. M. Sturm (2020): “The Making of the Modern Metropo-

lis: Evidence from London,” Quarterly Journal of Economics, 135(4), 2059–2133.

Larson, W., and W. Zhao (2017): “Telework: Urban form, energy consumption, and green-

house gas implications,” Economic Inquiry, 55(2), 714–735.

Lennox, J. (2020): “More working from home will change the shape and size of cities,” Centre

of Policy Studies/IMPACT Centre Working Papers g-306, Victoria University, Centre of Policy

Studies/IMPACT Centre.

Mas, A., and A. Pallais (2020): “Alternative work arrangements,” Discussion paper, National

Bureau of Economic Research.

Muresan, A. (2016): “Who Lives Largest? The Growth of Urban American Homes in the Last

100 Years,” Press Release.

Nilles, J. (2000): “Telework in the US: Telework America survey 2000,” Washington, DC:

International Telework Association and Council.

Owens, R., E. Rossi-Hansberg, and P.-D. Sarte (2020): “Rethinking Detroit,” American

Economic Journal: Economic Policy, 12(2), 258–305.

Ozimek, A. (2020): “Remote Workers on the Move,” Upwork Economist Report.

Rhee, H.-J. (2008): “Home-based telecommuting and commuting behavior,” Journal of Urban

Economics, 63(1), 198–216.

20



Rossi-Hansberg, E., P.-D. Sarte, and F. Schwartzman (2019): “Cognitive Hubs and

Spatial Redistribution,” Working Paper 26267, National Bureau of Economic Research.

Safirova, E. (2003): “Telecommuting, traffic congestion, and agglomeration: a general equilib-

rium model,” Journal of Urban Economics, 52(1), 26–52.

Severen, C. (2019): “Commuting, Labor, and Housing Market Effects of Mass Transportation:

Welfare and Identification,” Working Paper.

Shorrocks, A. (2013): “Decomposition procedures for distributional analysis: a unified frame-

work based on the Shapley value,” The Journal of Economic Inequality, 11(1), 99–126.

Small, K. A., and E. T. Verhoef (2007): The economics of urban transportation. Routledge.

Spear, B. D. (2011): NCHRP 08-36, Task 098 Improving Employment Data for Transportation

Planning. American Association of State Highway and Transportation Officials.

Tsivanidis, N. (2019): “The Aggregate and Distributional Effects of Urban Transit Infrastruc-
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A Data Appendix

A.1 Property Price Data

Our commercial and residential property price data comes from DataQuick, which provides

the universe of property transactions and the characteristics of individual properties. The dataset

covers 2,354,535 properties over 2007–2016 in the Los Angeles-Long Beach combined statistical

area. The data provides information such as sales price, geographical coordinates, transaction

date, property use, transaction type, number of rooms, number of baths, square-footage, lot size,

year built, etc.

We categorize properties as commercial or residential based on their reported use. Examples

of residential use include “condominium”, “single family residence”, and “duplex”. Examples

of commercial use include “hotel/motel”, “restaurant”, and “office building”. Table 2 provides

descriptive statistics. Table 3 reports the number of observations in each county over the pe-

riod of 2007–2016. Note that the commercial transactions are far less frequent than residential

transactions.

We then use the transactions data to estimate hedonic tract-level residential and commercial

property indices. For a residential transaction of a property p, in tract j in year-month t, we

estimate

ln(Ppjt) = α + βXp + τt + ζresj + εpjt, (13)

where Ppjt is the price per square foot; Xp contains property characteristics including property

use, transaction type, number of rooms, number of baths, lot size, and year built; and τt is the

year-month fixed effect. Then the residential price index in tract j corresponds to ζresg , the tract

fixed effect.

Because commercial transactions are less numerous and more spatially concentrated, for many

Census tracts we only observe very few or no transactions in the period of interest. To overcome

this issue, we calculate commercial property indices at the Public Use Microdata Area (PUMA)-

level.25 For a transaction of a commercial property p, in tract j of PUMA g in year-month t, we

estimate

ln(Ppgjt) = α + βXp + τt + ζcomg + υpgjt, (14)

where Ppgjt is the price per square foot; Xp is property characteristics including property use; and

τt is the year-month fixed effect. The commercial price index in PUMA g corresponds to ζcomg ,

which is the PUMA fixed effect. Then, to obtain tract-level commercial price indices ζcomj , we

simply assign the same value of ζcomg to all tracts j that belong to PUMA g.

25PUMA is a geographic unit used by the US Census for providing statistical and demographic information.
Each PUMA contains between 100,000 and 200,000 inhabitants. There are 123 PUMAs in the Los Angeles-Long
Beach combined statistical area.
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Table 2: Descriptive Statistics

Panel A. Residential Properties

County sqft (mean) sqft (median) sales price, $ (mean) sales price, $ (median)

Los Angeles 1752.25 1499 774734.19 389000
Orange 1969.92 1578 714043.38 495000
Riverside 2046.06 1855 489885.35 246649
San Bernardino 1759.41 1584 345662.41 200000
Ventura 1860.88 1626 569042.40 410000

Panel B. Commercial Properties

County sqft (mean) sqft (median) sales price, $ (mean) sales price, $ (median)

Los Angeles 20687.28 5203 5661399.99 1300000
Orange 16447.48 5329 3879699.73 1260000
Riverside 1329.38 1201 1813988.76 590000
San Bernardino 19486.08 3541 2472923.09 522000
Ventura 12087.09 4565 3513023.97 982500

Table 3: Number of Transactions by County and Property Type

Los Angeles Orange Riverside San Bernardino Ventura Total

Residential 909,954 330,689 557,204 363,173 105,518 2,266,538
Commercial 47,408 12,084 14,045 11,099 3,361 87,997

A.2 Wage Data

Our sources of wage data are the Census Transportation Planning Products (CTPP) and

the American Community Survey (ACS). CTPP data sets produce tabulations of the ACS data,

aggregated at the Census tract level. We use the data reported for years 2012 to 2016. We use the

variable “earnings in the past 12 months (2016 $), for the workers 16-year-old and over,” which is

based on the respondents’ workplace locations. The variable provides the estimates of the number

of people in several earning bins in each workplace tract. Table 4 provides an overview of the

number of observations in each bin for the five counties included in our study.

We calculate mean tract-level labor earnings as

wj =
Σbnworkersb,j ×meanwb

Σbnworkersb,j
, (15)

where nworkersb,j is the number of workers in bin b in tract j, and meanwb is mean earnings in

bin b for the entire Los Angeles-Long Beach combined statistical area, calculated from the ACS

microdata.

Next, to control for possible effects of workers’ heterogeneity on tract-level averages, we run

the following Mincer regression,

wj = α + β1agej + β2sexratioj + Σrβ2,rracer,j + Σiβ3,iindi,j + Σoβ4,oocco,j + εj, (16)
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Table 4: Number of observations in each earnings bin, by county

Income Bin Los Angeles Orange Riverside San Bernardino Ventura
$1 to $9,999 or loss 416,469 147,484 86,219 85,854 34,973
$10,000 to $14,999 279,132 90,871 51,959 52,605 21,143
$15,000 to $24,999 541,649 168,284 97,184 97,059 40,458
$25,000 to $34,999 440,298 146,337 79,994 81,911 34,829
$35,000 to $49,999 493,434 170,364 77,170 87,969 37,487
$50,000 to $64,999 387,533 138,932 57,409 62,487 27,979
$65,000 to $74,999 176,079 63,244 24,869 27,687 13,895
$75,000 to $99,999 308,994 114,436 39,159 44,409 23,871
$100,000 or more 486,179 189,108 44,925 43,158 36,346

No earnings 520 134 144 85 55

Earnings in the past 12 months (2016$) (Workers 16 years and over), based on workplace location, Source: CTPP.

where agej is the average age of workers; sexratioj is the proportion of males to females in the

labor force; racer,j is the share of race r ∈ {Asian,Black,Hispanic,White}; indi,j is the share

of jobs in industry i; occo,j is share of jobs in occupation o in tract j.26 Finally, the estimated

tract-level wage index corresponds to the sum of the estimated constant and the estimated tract

fixed effect, α̂ + ε̂j. Table 5 presents summary statistics for the estimated tract-level earnings.

Table 5: Descriptive statistics: the estimated tract-level earnings, by county

Obs Mean Std. Dev. Min Max
Los Angeles 2,339 61,203.81 13,589.54 21,376.82 170,987.1

Orange 582 63,455.76 11,197.14 24,120.39 113,428.8
Riverside 452 61,477.51 13,606.08 17,286.49 138,802.9

San Bernardino 369 59,823.33 12,741.2 21,101.49 132,544.9
Ventura 172 61,034.83 10,709.51 29,174.4 89,796.23

Earnings in U.S. dollars in the past 12 months (2016$) (Workers 16 years and over), based on workplace location,
Source: CTPP.

26We use the following industry categories: Agricultural; Armed force; Art, entertainment, recreation, ac-
commodation; Construction; Education, health, and social services; Finance, insurance, real estate; Information;
Manufacturing; Other services; Professional scientific management; Public administration, Retail. We use the fol-
lowing occupation categories: Architecture and engineering; Armed Forces; Arts, design, entertainment, sports, and
media; Building and grounds cleaning and maintenance; Business and financial operations specialists; Community
and social service; Computer and mathematical; Construction and extraction; Education, training, and library;
Farmers and farm managers; Farming, fishing, and forestry; Food preparation and serving related; Healthcare
practitioners and technicians; Healthcare support; Installation, maintenance, and repair; Legal; Life, physical, and
social science; Management; Office and administrative support; Personal care and service; Production;Protective
service; Sales and related.
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A.3 Commuting Time Data

The CTPP database provides commuting time data for 270,436 origin-destination tract pairs

in the Los Angeles-Long Beach Combined Statistical Area for 2012-2016. There are 15,342,889

possible trajectories, and the LODES data for 2012-2016 reports positive commuting flows for

5,647,791 of them. We follow the practice recommended by Spear (2011) and use LODES data

as a measure of commuting flows and CTPP data to provide information on commute times.

Table 6: Commuting time coverage, by distance

N. of trajectories % covered by time data % w/ observed positive flows N. of commuters

< 1 km 10,105 60.8% 96.4% 239,188
< 2 km 36,205 40.5% 93.3% 410,571
< 5 km 188,047 24.4% 86.9% 1,088,797
< 10 km 649,005 15.0% 79.9% 2,248,646
< 20 km 2,099,417 8.2% 69.8% 3,995,134
< 40 km 5,549,775 4.3% 54.4% 5,508,736
< 80 km 10,752,785 2.5% 43.4% 6,515,595

All 15,342,889 1.8% 36.8% 6,935,765

Table 7: Commuting time coverage, by N. of commuters

N. of trajectories % covered by time data N. of commuters

> 100 commuters 1,778 94.4% 259,259
> 50 commuters 8,678 89.9% 723,849
> 25 commuters 27,833 82.2% 1,380,081
> 10 commuters 96,177 63.7% 2,417,561
> 5 commuters 220,555 46.5% 3,289,529
> 1 commuters 1,108,755 17.9% 5,247,370

All > 0 5,647,791 4.8% 6,935,760

Table 6 summarizes CTPP data coverage by trajectory distance. Table 7 summarizes CTPP

data coverage by trajectory and the number of commuters observed using that trajectory. These

tables show that CTPP has the greatest coverage of high-volume short-distance trajectories, just

as Spear (2011) observes and just as would be expected from a dataset based on a partial sample.

The CTPP data places commuting times into 10 bins: less than 5 minutes, 5 to 14 minutes,

15 to 19 minutes, 20 to 29 minutes, 30 to 44 minutes, 45 to 59 minutes, 60 to 74 minutes, 75 to

89 minutes, 90 or more minutes, and work from home. In order to get as accurate commute times

as possible for the set of primitive connections of the network, we drop all home-workers, who are

irrelevant for transit times. We drop workers in the top time bin, because this bin has no upper

bound and so the mean may vary substantially across trajectories. We assign mean commute

times to all the remaining bins as the mid-points between the bin bounds. We then drop all

observations which report an average commuting speed that is either less than 8 kilometers per

hour, a brisk walking pace, or more than 70 miles per hour (112.7 kilometers per hour), the
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standard rural freeway speed limit in the United States. Finally, we calculate tractpair mean

commuting times as the average of the mean commuting times in each bin weighted by the share

of commuters on that tractpair reporting times in each bin. Table 8 provides a summary of the

overall share of commuters in each bin before and after the cleaning steps described above, and

the mean commute time assigned to each bin.

Table 8: Commuting time bins

share in raw data share in cleaned data bin mean time

< 5 min 1.6% 0.9% 5
5-14 min 19.4% 18.9% 10
15-19 min 14.0% 15.7% 17
20-29 min 19.1% 22.5% 25
30-44 min 20.5% 24.4% 37
45-59 min 8.0% 9.6% 52
60-74 min 6.1% 6.9% 67
75-89 min 0.9% 1.0% 82
> 90 min 2.8% 0 ??
work from home 7.6% 0 n/a

The previous cleaning steps eliminate observations for 36,279 trajectories, and we are left with

commuting time data for 234,157 origin-destination pairs. We then find that there are 211,521

paths for which a commuting time estimate exists for the outbound route but not the reverse. We

impute commute times for these missing return journeys, assuming that they can be completed

in the same time as the outbound trajectories. This set of connections is then almost enough

to connect all tracts–there are only a set of eight tracts that are still detached from the rest of

the network. In order to remedy this, we create a connection at the mean travel speed of 31.3

kilometers per hour between these left-out tracts and any tracts within a radius twice as large as

the hypothetical radius of tract if its land area formed a circle.27

The final directed network contains 447,277 directed paths. We use the Dijkstra’s algorithm to

calculate the fastest path through this network for each origin-destination pair. We assume that

these calculated times represent the time require to travel from tract centroid to tract centroid.

We then add time to each trajectory to represent the time need to travel from place of residence

within tract to residence tract centroid, and from workplace tract centroid to workplace within the

tract. Naturally, these times are proportional to tract land area–larger tracts should on average

require more internal travel time. Specifically, we assume that the “internal” distance traveled

on each end of the trip is equal to the hypothetical average straight-line distance from any point

in the tract to the tract centroid, if the tract were a circle.28 We then assume that each of these

distances is traveled at twice the overall average commuting speed in the cleaned data of 31.3

kilometers per hour. For the vast majority of tracts this adds a negligible amount to commuting

272×
√

landarea/π
28 2

3

√
landarea/π
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time–two minutes or less. For a handful of very large tracts it adds considerable travel time–up to

half an hour. We think that this is reasonable given the time that is required to travel within these

much larger tracts. These origin-destination distribution effects are also applied to self-commute

times, so that a worker that lives and works in the same tract will still have to spend some time

travelling to their workplace–more time for larger tracts.

A.4 Summary

Table 9 gives summary statistics by tract for seven key variables: residential density; employ-

ment density; wage by workplace weighted by employees; average constant-quality price of one

square foot of residential floorspace; average constant-quality price of one square foot of com-

mercial floorspace; average commute time by residence tract; and average commute distance by

residence tract.

Table 9: Data overview

Mean Median St. Dev. Max. N. Obs.

Residents/km2 1,621.4 1,380.3 1,376.6 15,929.3 3,846
Workers/km2 1,285.8 578.7 3,961.0 157,995.7 3,846
Wages ($$, weight by employees) 58,874 58,528 7,609 159,059 3,846

Res. price/sq ft ($$, weight by residents) 369 331 347 9,349 3,846
Comm. price/sq ft ($$, weight by employees) 644 581 324 6,709 3,846

Av. commute time (min, weight by residents) 28.3 26.3 6.8 96.1 3,846

Av. commute distance (km, weight by residents) 26.2 22.8 11.3 131.2 3,846

B Model Details

B.1 Floorspace Markets

B.1.1 Floorspace Supply

Land-market clearing and profit maximization imply that the equilibrium supply of floorspace

is

Hi = φi(Hi) ((1− η)q̄i)
1−η
η Li. (17)

Solving this expression for Hi and using the definition of construction efficiency φi(Hi), yields

Hi =
((1− η)q̄i)

1−η
η Li

1 + ((1− η)q̄i)
1−η
η Li/H̄i

. (18)
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B.1.2 Floorspace Demand

From equation (3), the probability that an individual who commutes a fraction θ of days works

in j, conditional on living in i, is given by

πij|i(θ) =
Ejwij(θ)

εdij(θ)
−ε

I∑
s=1

Eswrs(θ)εdis(θ)−ε
. (19)

Define w̃i as the average wage earned by residents of location i. This is given by

w̃i ≡
I∑
j=1

[
wCj

πij|i(1)NRi(1)

NRi

+ wTij
πij|i(θ

T )NRi(θ
T )

NRi

]
. (20)

Therefore, the demand for residential and home-office floorspace is given by

HRi =
γ(1 + τ)w̃i

qRi
NRi. (21)

The demand for home offices is

HT i =

(
1− αT
qRi

) 1
αT

I∑
j=1

(νAj)
1
αT NT

ij . (22)

Finally, the demand for commercial floorspace is given by

HWj =

(
(1− α)Aj

qWj

) 1
α

NC
Wj. (23)

B.2 Factor Incomes and Transfers

Since developers optimally use all land available for development, Λi, equilibrium land prices

are given by

li =
η

Λi

(qRi (HRi +HT i) + qWiHWi) . (24)

The city-wide total land income is
I∑
i=1

liΛi. (25)

Income generated by land and the consumption good sold for the purposes of real estate

development is redistributed to all workers, proportionally to their incomes. The transfers increase

labor income by a fraction of τ which is equal to

τ =

∑
i (liΛi +Ki)∑

i w̃iNRi +
∑

i (liΛi +Ki)
. (26)
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B.3 Welfare

The expected utility enjoyed by a resident of the city is given by

U ≡ Γ

(
ε− 1

ε

)[ I∑
r=1

I∑
s=1

XrEs
[
(1− ψ)

(
e−κtrs(1 + τ)wCs q

−γ
Rr

)ε
+ ψ

(
(1− θ + θe−κtrs)(1 + τ)wTrsq

−γ
Rr

)ε]] 1
ε

,

(27)

where Γ(·) is the gamma function. Note that the expected utility is defined before the telecom-

muting lottery and before the location preference shocks realize.

A consumption-equivalent measure of change in welfare is given by ∆. This quantity represents

the percentage amount by which the composite consumption of goods and housing, c1−γhγ, must

change in order to make the expected utility in the benchmark economy equal to the expected

utility in the counterfactual economy. Note that in this model the composite consumption is

proportional to wages. Let “̃·” denote variables in the counterfactual economy. Then ∆ must

satisfy

[
I∑
r=1

I∑
s=1

XrEs
[
(1− ψ)

(
e−κtrs(1 + τ)(1 + ∆)wsq

−γ
Rr

)ε
+ ψ

(
(1− θ + θe−κtrs)(1 + τ)(1 + ∆)wTrsq

−γ
Rr

)ε]] 1
ε

=

[
I∑
r=1

I∑
s=1

X̃rEs

[
(1− ψ)

(
e−κt̃rs(1 + τ̃)w̃sq̃

−γ
Rr

)ε
+ ψ

(
(1− θ + θe−κt̃rs)(1 + τ̃)w̃Trsq̃

−γ
Rr

)ε]] 1
ε

.

It follows that the change in welfare ∆ is a function of the ratio of expected utilities in the

counterfactual and the benchmark economies,

∆ =
Ũ
U
− 1. (28)

C Structural Residuals

The amounts of commuting workers and residents are related as

NWj(1) =
I∑
i=1

πij|i(1)NRi(1), (29)

Let Êj ≡ Ej
(
wCj
)ε

. From equations (19) and (29), Êj can be defined implicitly as:

Êj = NWj(1)

(
I∑
i=1

e−εκtij∑I
s=1 Êse

−εκtis
NRi(1)

)−1

, (30)
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where NWj and NRi are observed tract-level employment and residential populations, and tij are

observed average commuting times from tract i to tract j. Since we do not observe how many

workers telecommute in each tract and since the share of telecommuters in the data is small

(3.74% of workforce), we perform this and the following calculations assuming that all workers

commute to their jobs. A vector Ê is solved recursively using equation (30) and then the vector

of residuals E is recovered as Ej = Êj
(
wCj
)−ε

, using observed tract-level wages.

A similar procedure is applied to solve for vector X. First, let X̂j ≡ Xjq
−γε
Rj . X̂j can be defined

implicitly as:

X̂i = NRi

(
I∑
j=1

e−εκtij∑I
r=1 X̂re−εκtrj

NWj

)−1

. (31)

The vector X̂ is solved recursively using equation (31) and then the vector of residuals X is

recovered as Xj = X̂jq
γε
Rj, using observed tract-level prices of residential floorspace. Then the

exogenous part of local amenities, xj, can be recovered using equation (12) and the data on local

residential population and land area.

The vector of local productivities A can be solved for using (7) and the data on wages and

commercial floorspace prices as follows:

Aj =

(
wCj
α

)α(
qWj

1− α

)1−α

. (32)

Then the exogenous part aj can be recovered using equation (11) and the data on local employment

and land area.

Since we observe commercial and residential floorspace prices for all Census tracts, we can

calculate the zoning parameter ξi as

ξi =
qWi

qRi
. (33)

To calculate ξi, we replace qWi and qRi with tract-level quality adjusted indexes of commercial

and residential prices, ζcomj and ζresj , respectively, as described in Appendix A.

Finally, in order to recover H̄i, we use market clearing conditions for land and floorspace

(Li = Λi and equation 18). Combining them, we can recover H̄i from the following relationship:

H̄i =
φ̄ ((1− η)q̄i)

1−η
η Λi

φ̄ ((1− η)q̄i)
1−η
η Λi/Hi − 1

, (34)

where Λi is the observed land area and Hi = HRi +HWi +HT i is the total demand for floorspace

in tract i.

Figure 4 maps the recovered values for three key structural paramters: the exogenous com-

ponent of residential amenities, xi, the exogenous component of productivity, ai, and exogenous

employment amenities, Ei.
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Figure 4: Structural residuals
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D Additional Results of Counterfactual Experiments

D.1 Land Use

When the fraction of telecommuters rises, land use becomes more specialized. Figure 5 shows

that in the economy with more widespread telework, commercial development becomes relatively

more prevalent in core areas and less prevalent in the periphery. In addition, both types of

development become more concentrated in space. As a consequence, the numbers of primarily

residential and primarily commercial tracts increase, while the number of mixed tracts goes down

(right panel of Figure 6).29

Figure 5: Land Use

Note: Benchmark (upper figure) and the ψ = 0.33 counterfactual (lower figure). Maps show the fraction of

commercial floorspace in each tract, varying from 0 (green) to 1 (brown). See main text for details.

29We label a tract as commercial if the share of commercial floorspace in the tract is more than 3 times the
share of the average tract. Similarly, we label a tract as residential if the share of commercial floorspace in the
tract is less than 1/3 of the share of the average tract. All other tracts are labeled mixed.
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Figure 6: Land Use Specialization
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See main text for details.

D.2 Job access

In large, sprawled and congested cities, such as Los Angeles, good jobs are often inaccessible

for households who live on the periphery. To study how a shift to telecommuting impacts job

access, we calculate commuter market access for each tract as CMAi =
∑

j(wje
−κtij)ε. We find

that, as the number of teleworkers grows, the average job access increases for those who keep

commuting (left panel of Figure 7). Moreover, in the counterfactual economy the elasticity of

housing prices with respect to the market access halves, meaning that places with better access

to jobs command a lower price premium (right panel of Figure 7).

Figure 7: Access to jobs
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Note: Left panel shows the weighted-average commuter market access for each level of ψ. Right panel shows the

relationship between CMAi and housing prices qRi in the benchmark economy and the counterfactual economy

with ψ = 0.33.
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D.3 Breakdown of residential and job changes by worker type

In the context of the counterfactual exercise, there are three types of workers: continuing

commuters, old telecommuters, and new telecommuters. In Figures 8 and 9, we show changes in

residence and jobs for each category separately.
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Figure 8: Residence changes for continuing commuters, old telecommuters, and new telecommuters
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Note: Absolute change in residential density for continuing commuters (top figure), old telecommuters (middle

figure) and new telecommuters (bottom figure). Relative to benchmark economy in counterfactual with ψ = 0.33.
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Figure 9: Job changes for continuing commuters, old telecommuters, and new telecommuters
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Note: Absolute change in job density for continuing commuters (top figure), old telecommuters (middle figure)

and new telecommuters (bottom figure). Relative to benchmark economy in counterfactual with ψ = 0.33.
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E Elasticity of Speed to Traffic Volume

We set the elasticity of commuting speed with respect to traffic volume is εV = 0.2, following

Small and Verhoef (2007). In the counterfactual economy, we calculate changes in commuting

speeds as
speedCFij − speedBMij

speedBMij
= −εV

VMTCF − VMTBM

VMTBM
,

assuming that the road capacity remains unchanged and only taking into account the change

in total vehicle miles traveled (VMT ) in the metropolitan area.30 Then we recover commuting

times as tCFij = distanceij/max{speedCFij , 65mph}. The maximum operator caps speeds at 65

mph which is the speed limit on most highways in California. Since tij and VMT endogenously

depend on each other, when solving for an equilibrium in a counterfactual economy, we iterate

the model until VMT converges.

Robustness. Since the results of the counterfactual experiments described in Section 3 cru-

cially depend on changes in commuting speeds, we investigate whether our results are robust to

the value of εV . While 0.2 is a standard value in the traffic modeling literature, other studies

used higher values.31 At the same time, a low value of εV ensures that many of our counterfactual

results are conservative.

To understand how sensitive our results are to the value of εV , we compute the counterfactual

economy with fraction ψ = 0.33 telecommuters at different levels of εV ranging from 0 to 1. Our

three main sets of results remain robust to the value of εV . First, regardless of the value of εV , the

economy exhibits the decentralization of residents and centralization of jobs. Second, commuters’

trips are characterized by shorter times and longer distances (Figure 10). Third, residential and

commercial floorspace prices fall for all values of εV (Figure 11).

30Note that our methodology does not allow for differential impact of changes in traffic on individual routes.
31For example, Akbar, Couture, Duranton, and Storeygard (2020) used values of 0.2 and 0.3. Bento, Hall, and

Heilmann (2020) estimate a value of about 0.9 for peak-hour commuting in Los Angeles.
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Figure 10: Commuting time and distance
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Note: Left panel displays the average commuting time for all workers and commuters in the benchmark and the

counterfactual economies at different levels of the elasticity of commuting speed with respect to traffic volume.

Right panel shows the average commuting distance.

Figure 11: House prices
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Note: The figure displays the counterfactual change in average residential and commercial floorspace prices, as a

function of the elasticity of commuting speed with respect to traffic volume.

At the same time, quantitative implications of more telecommuting for wages and welfare are

sensitive to the value of εV . In our main counterfactual with εV = 0.2, the average commuter

market access (CMA) increases by about 17%. However, as εV approaches 1, commutes become

speedier and the average CMA increases by nearly 80% (left panel of Figure 12). In addition, the

higher the elasticity of speed, the stronger will be spatial productivity spillovers. Hence, when εV

goes to 1, wage gains for commuters are much larger and wage losses for telecommuters turn into
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small gains, resulting in larger average wage increases (right panel of Figure 12).

Figure 12: Commuter market access, wages, and land prices
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Note: Left panel displays the average commuter market access for commuters, as a function of the elasticity of

commuting speed with respect to traffic volume. Right panel shows average wages and land prices.

As a result, with higher values of εV , welfare gains are larger (Figure 13). In particular, as εV

goes to 1, commuters see their welfare increase by almost 10% (compared to 2.2% at εV = 0.2),

telecommuters experience a 2% increase (compared to a 2.5% loss), and overall welfare increases

by nearly 25% (compared to 18.9%).
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Figure 13: Welfare
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Note: Left panel shows the change in total expected welfare of commuters (“total welfare”), welfare net of pref-

erence shocks and amenities (“consumption and commuting welfare”), and welfare net of shocks, amenities, and

commuting costs (“consumption welfare”). Central and right panels report changes in welfare for telecommuters

and all workers, respectively.

F Accounting for Spatial Variation in Outcomes

Centrality. Distance from the center is a key driver of outcomes in most theoretical models

of the city. When dealing with data on real cities, it has been customary to measure this factor

simply as the straight-line distance from a “central business district” whose location is determined

by convention. Our alternative, which uses information on the city’s transportation network, is

the eigenvector centrality of each tract. We calculate it by finding the eigenvector associated

with the largest eigenvalue of the I × I matrix whose ijth element is given by exp{−κετij}. This

measure reflects the total strength of a given tract’s connections, taking into account not only

its direct connections, but also the connections of its connections (second order), and their (third

order) connections, and so on ad infinitum.

Interestingly, this measure picks out downtown LA as the most central location on the map. It

also turns out to be highly correlated with both straight line distance and travel time to downtown

LA (Pearson’s correlation coefficient 0.97 for each). Figure 14 shows the evolution of some key

variables along the centrality gradient.32 Real estate prices, the density of employment, and the

32The x-axis is scaled to quantiles of the centrality measure, weighted by land area. In other words, 0.5 on the
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Figure 14: Quantiles of Centrality and Initial Allocations
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density of residence all increase on average the closer one gets to the center. The time required

to reach the downtown LA is also, naturally, lower near the center.

In Figure 3, we plot the changes that take place in the counterfactual exercise in the same

manner as in Figure 14. Here again we see that on average jobs move towards the center and

residents move away from it, and that there are big property price increases in the periphery. We

can also see that there is a great deal of variation that is unexplained.

Accounting for counterfactual changes. In order to have a more complete idea of what

is driving the variation in counterfactual outcomes, we expand our view to consider not only a

location’s initial centrality, but also the change in centrality between the baseline and counterfac-

tual due to changes in average speed, and the exogenous local characteristics ai, Ei and xi. We

run a multivariate regression at the tract level, weighted by land area, of these five variables on

the log differences between counterfactual and baseline floorspace prices, employment density, and

residential density. From the estimated coefficients of these regressions we can infer the sign of

each relationship. We then use the Shapley method to decompose the coefficient of determination

(R2) for each regression.33 The share assigned to each explanatory variable is a measure of its

importance in accounting for the variation across space in each counterfactual outcome.

Table 10 shows the results of this exercise for the change in floorspace prices. The negative

estimated coefficient on centrality confirms the core-periphery gradient of price changes, with

prices falling in the core and rising in the periphery. Once this is accounted for, locations whose

centrality increases due to change in speed in the counterfactual also see a more positive overall

change in prices. The negative coefficients on ai indicates that the relative value of real estate in

locations with high productivity falls, which is to be expected as workers on average need much

x-axis represents the single square meter of land area such that 50% of the land area in the metro area is less
central (and 50% is more central.

33See, e.g., Shorrocks (2013).
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Table 10: Accounting for counterfactual floorspace price changes

Coeff. Var. expl.
constant 0.274

(0.063)

centrality 0.022 32.0%
(0.015)

∆ centrality 3.918 32.1%
(0.389)

ai -0.270 3.4%
(0.012)

Ei -0.018 1.8%
(0.001)

xi 0.024 15.0%
(0.001)

Total 84.33%

less worksite floorspace than before. The positive coefficient on xi indicates that the premium for

locations with good natural amenities has increased in the counterfactual, driven by telecommuters

who can now choose their residence location more freely. We see that position relative to the core

drives the lion’s share of the action here: centrality and ∆ centrality together account for 64.1%

of the variation in outcomes. Overall, the factors we consider here account for about 84% of the

total variation.

Table 11: Accounting for counterfactual employment changes

Always commuter New telecommute Always telecommute All
Coeff. Var. expl. Coeff. Var. expl. Coeff. Var. expl. Coeff. Var. expl.

constant -1.292 -7.139 -0.924 -3.835
(0.199) (0.362) (0.119) (0.251)

centrality -0.138 34.5% -1.384 5.0% -0.149 32.9% -0.684 20.6%
(0.049) (0.089) (0.029) (0.062)

∆ centrality -15.619 35.0% -40.542 5.9% -10.146 33.9% -25.506 22.2%
(1.237) (2.253) (0.737) (1.561)

ai 1.012 3.1% 2.508 18.7% 0.534 3.1% 1.596 8.3%
(0.039) (0.070) (0.023) (0.049)

Ei 0.057 1.7% 0.189 4.7% 0.022 1.8% 0.107 2.2%
(0.004) (0.008) (0.003) (0.006)

xi -0.041 10.0% -0.015 4.8% -0.010 7.3% -0.030 3.5%
(0.003) (0.005) (0.002) (0.003)

Total 84.36% 39.04% 78.95% 56.78%

For employment density and residential density, we further break the overall changes down

into changes in the average choices made by three groups of workers. These groups are: those

that commute both in the baseline and the counterfactual (67% of all workers), those that switch

from commuting to telecommuting (29.3%), and those that telecommute both in the baseline and

the counterfactual (3.7%). Table 11 shows the results for changes in employment density and

Table 12 shows the same for changes in resident density. Workers who continue commuting take

jobs closer to the urban core and also choose residences that are, on average, closer to the core.
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Table 12: Accounting for counterfactual residence changes

Always commuter New telecommute Always telecommute All
Coeff. Var. expl. Coeff. Var. expl. Coeff. Var. expl. Coeff. Var. expl.

constant 0.840 -0.078 9.789 -0.148
(0.119) (0.225) (0.502) (0.141)

centrality 0.153 29.5% 0.026 35.6% 1.038 12.4% -0.045 24.9%
(0.029) (0.055) (0.123) (0.035)

∆ centrality -1.282 29.5% 15.681 36.0% 44.651 13.1% 3.514 24.9%
(0.737) (1.400) (3.122) (0.879)

ai 0.171 3.1% -0.240 2.8% -8.139 17.2% 0.009 1.9%
(0.023) (0.044) (0.097) (0.027)

Ei 0.050 2.4% 0.036 2.6% -1.051 27.8% 0.046 5.5%
(0.003) (0.005) (0.011) (0.003)

xi 0.004 5.8% 0.010 10.2% 0.338 7.6% -0.001 7.8%
(0.002) (0.003) (0.007) (0.002)

Total 70.33% 87.19% 78.08% 65.01%

New telecommuters, with the new-found freedom, do the opposite: they choose jobs and residence

that are, on average, farther from the core than before. Continuing telecommuters make smaller

shifts overall, taking jobs a bit closer to the core and moving their residences a bit farther from

it. Across all categories of workers there is a strong shift from commercial to residential use of

land in locations where there is a larger increase in centrality due to commuting speed changes.

There is also some heterogeneity in the way that location-specific characteristics correlate with

changes in choices for the three groups. For example, those who telecommute both in the baseline

and the counterfactual move their residences out of high-ai and high-Ei tracts, presumably to

make room for the overall shift of employment into those tracts, while this pattern isn’t seen for

the other two groups.

As with changes in land prices, initial centrality and changes in centrality together account

for the lion’s share of the explained variation: 42.6% out of 56.78% total for employment changes,

and 49.8% out of 65.01% total for residence changes. The positive coefficient on ai for employment

changes, and its 8.3% share in the variation in outcomes, is consistent with an improvment in the

allocation of workers to high-productivity locations in the counterfactual. Overall, the included

factors account for less of the variation than in the case of floorspace prices. This is partly due

to opposing tendencies in the three different types of workers cancelling each other out.
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