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Abstract

We build a quantitative spatial model in which someworkers can substitute on-site

effort with work done from home. Ability and propensity to telecommute vary by

education and industry. We quantify our framework to match the distribution of jobs

and residents across 4,502 U.S. locations. Then we simulate permanent increases in

the attractiveness and productivity of telework that lead to greater adoption of hybrid

and fully remote work. To validate our model, we show that our results are positively

correlated with local changes in residents and housing costs observed 2019–2023. The

rise of telework results in a rich non-monotonic pattern of reallocations of residents and

jobs within and across cities. Workers who can telecommute experience welfare gains,

and those who cannot suffer losses. Broader access to jobs reduces wage inequality

across residential locations, and heralds a partial reversal in the spatial concentration

of talent and spending power known as the “Great Divergence.”
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1 Introduction

Telecommuting, once a fond dream of techno-utopians, came roaring to the forefront of

the American workplace in the spring of 2020. While no more than 8% of work was done

remotely in 2019, shutdowns and social-distancing policies introduced at the onset of the

Covid-19 pandemic pushed over one-half of American workers to telecommute. What

started as an emergency response has for many become a new norm: in late 2024, nearly

five years after the initial shock, work from home still accounted for over one quarter of

all full paid days of work.

This matters because the daily commute has been one of the primary sinews stitching

commercial and residential areas together within the urban landscape. If this tie is

loosened, workers with remote or “hybrid” jobs nominally located in a city center may

choose to live beyond the bounds of its administratively-defined commuting zone–and

perhaps on the other side of the country entirely. This is a new type of worker mobility

which previous urban economic models–which allow movement either within cities or
between them–are not equipped to copewith. Beyond shufflingworkers and jobs between

neighborhoods and cities, it may also have macro-level implications–for example, either

accelerating or reversing the trend of spatially concentrating talent and income known as

the “Great Divergence.”

In this paper, we aim to update the spatialmodeling toolbox to allow remote and hybrid

employment, and develop a quantitative framework capable of analyzing the full range

of likely reallocations, both within and across cities. We divide the continental United

States into 4,502 locations, and allow each worker to choose any pair of residence and job

sites. Some workers are able to substitute on-site effort with work done from home. Being

able to produce output at home saves them from costly commuting, and may induce

them to choose a more distant residence location. On the other hand, when working

remotely, they have a different level of productivity and have to procure floorspace for

a home office. Their choice of how often to work on site versus at home also depends

on a preference shifter we label work-from-home aversion, representing tastes, norms, and

institutional policies regarding remotework. We show that, because telework allows firms

to hire workers from a broader “catchment area,” the range of parameter values for which

a unique equilibrium is guaranteed is narrower than in a conventional quantitative spatial

model.

We calibrate our model to be consistent with key facts about pre-2020 telecommuting.

Both the opportunity to telecommute, and commuting choices of remote-capable workers,

are allowed to differ for college and non-college educated workers, and for workers in
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tradable and non-tradable industries, consistent with the data. Our framework is also

consistent with the observed distribution of commuting frequencies, and the observed

spatial distribution of remote worker residences relative to their sites of employment.

We calibrate the elasticity of substitution between remote and on-site work, the relative

productivity of remote work, and the work from home aversion, separately for each sector

and education level.

We simulate a permanent increase in remote work by increasing work from home

productivity and lowering work from home aversion, guided by survey evidence from

Barrero, Bloom, and Davis (2021). This results in a greater adoption of hybrid and fully

remote work arrangements. We predict a net reallocation of jobs and residences across

model locations equivalent to 4.5% of the population.

Workers who can work from home experience a fall in the cost of choosing residence

locations far from jobs. This causes many of them to decentralize, moving to less densely-

populated areas, and allows them to be more selective in choosing locations with low

housing costs and better amenities. This movement creates some opportunities for those

who cannot work remotely. In response to falling housing prices in locations with conve-

nient commutes, they centralize, moving towards denser locations in larger metro areas.

This fall in the cost of a short commute also induces them to substitute away from ameni-

ties, leaving more high-amenity locations for the telecommuters.

Jobs in the non-tradable sector follow the movement of telecommuters out to suburbs

and smaller cities. Jobs in the tradable sector move in both directions. Some firms take

advantage of low real estate costs in low-density areas that can now pull from a larger

pool of remote workers. Others increase their operations in the highly-productive centers

of the largest cities, enjoying not only an expanded worker pool but also a decline in the

high cost of office space.

In aggregate, the average worker lives 47% farther from their place of work, but spends

25% less time commuting, pointing to potential reductions in traffic congestion and vehicle

use. The share of workers living in one commuting zone (CZ) and working in another

increases from 22% to nearly 32%, which may have major impacts on travel patterns and

call into question the current administrative definitions of CZs.

As model validation, we show that our counterfactual results are positively correlated

with observed changes in population and housing rents between 2019 and 2023.

We leverage our disaggregated and quantitative approach to explore the consequences

of remote work for a complex of recent trends across and within cities known as “The

Great Divergence” (Moretti, 2012). Our model predicts significant re-convergence: a fall

in skill sorting both within and across CZs, a fall in residential income inequality, and
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a fall in spatial house price inequality both within and across CZs. We review available

data for 2019–2023, and find trends broadly consistent with our model predictions.

Our framework builds on quantitative spatial models of joint job and residence choice,

such as Ahlfeldt, Redding, Sturm, andWolf (2015). Monte, Redding, and Rossi-Hansberg

(2018) analyze the U.S. system of cities using a model in which workers may commute

between counties–an approachwhichwe extend by includingmany small locationswithin

each urban county to study intra-city, as well as inter-city, adjustments. We contribute to

this literature by extending the toolbox to include a full-fledged model of working from

home.

Several other recent papers also use spatial equilibrium models to study the effects

of remote work on cities. Behrens, Kichko, and Thisse (2021), Brueckner, Kahn, and

Lin (2023), Davis, Ghent, and Gregory (2024), Kyriakopoulou and Picard (2021), Monte,

Porcher, and Rossi-Hansberg (2023), Brueckner (2024), and Richard (2024) develop styl-

ized spatial models with on-site and remote work, and study the implications of greater

work from home on the demand for floorspace, productivity, income inequality, and city

structure. Our framework has three main advantages relative to these more stylized ap-

proaches. First, by including a large number of locations, our framework can predict how
far new telecommuters will move from their jobs, a crucial variable if we want to under-

stand the impact on, e.g., real estate markets and commuting patterns. Second, closely

related to the first, our framework can also represent changes in the distribution ofworkers

across different work-from-home frequencies–crucial as “hybrid” work has emerged as a

popular option. Third, our model predicts how the location of jobs will also change–a

question with important implications for, e.g., the impact on city centers. We also model

telecommuting as an endogenous choice, a feature shared only with Davis, Ghent, and

Gregory (2024), Monte, Porcher, and Rossi-Hansberg (2023), and Richard (2024) from the

list above, which allows us to speak to themotivations and contributing factors of the shift

towards remote work.

Delventhal, Kwon, and Parkhomenko (2022) build a quantitative spatial model limited

to a single urban area–Los Angeles. Unlike in this paper, workers are homogeneous, work

from home behavior is exogenous, and there is no heterogeneity in the number of days

worked remotely among those who can work from home. Moreover, relocations across

metro areas are not allowed and non-tradable local goods are not considered. All of these

features are both conceptually and quantitatively essential.

Our paper also follows an earlier literature studying the impact of communication

technologies and telework, which includes contributions from Gaspar and Glaeser (1998),

Ellen and Hempstead (2002), Safirova (2003), Walls, Safirova, and Jiang (2006), Glaeser
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and Ponzetto (2007), Rhee (2008), and Larson and Zhao (2017).

Yet another strand of recent research empirically studies the role of work from home

in movement of residents, changes in real estate prices, and supply of amenities during

the pandemic, e.g., Althoff, Eckert, Ganapati, and Walsh (2022), Brueckner, Kahn, and

Lin (2023), Haslag and Weagley (2024), Li and Su (2021), Gupta, Mittal, Peeters, and

Van Nieuwerburgh (2022), Liu and Su (2021), Rosenthal, Strange, and Urrego (2021),

De Fraja, Matheson, and Rockey (2021), Dalton, Dey, and Loewenstein (2022), Veuger,

Hoxie, and Brooks (2023), Duranton and Handbury (2023), and Bick, Blandin, Mertens,

and Rubinton (2024), among others. A few recent papers also study the effects of telework

on residential and commercial real estate values using structural models, e.g., Mondragon

and Wieland (2022), Howard, Liebersohn, and Ozimek (2022), Gamber, Graham, and

Yadav (2023), and Gupta, Mittal, and Van Nieuwerburgh (2022), among others. Recent

research on remote work and its effects on migration and real estate prices is summarized

in Van Nieuwerburgh (2023).

The remainder of the paper is organized as follows. Section 2 documents key facts

about pre-2020 remote work, and presents evidence related to its future trajectory. Section

3 describes the theoretical framework. Section 4 describes the data and the methodology

used to quantify the model, and demonstrates how the model is congruent with the facts

shown in Section 2. Section 5 presents the results of simulations where work from home

increases permanently. In Section 6 we explore the consequences of remote work for the

“Great Divergence” in economic outcomes across U.S. cities. Section 7 concludes.

2 Remote Work: Past and Present

In this section we establish facts about telecommuting prior to 2020 and its trajectory

during the Covid-19 pandemic. This will motivate the way we build the model as well as

how we approach the counterfactual exercise.

2.1 The Who, What and Where of U.S. Telework

In order to construct a sensible model of remote work in the U.S. context, we should first

make ourselves familiar with some basic facts. First of all, who can telecommute, and of

those, who actually does? Second, what does this telecommuting entail? In particular,

how frequently do remote workers work from home? Third,where do telecommuters live?

To address the first question, we divide the workforce by education level and industry.

Collegeworkers have obtained a four-year degree ormore, andnon-collegehavenot. Tradable
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Figure 1: Telecommutability and uptake
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Note: Bar length corresponds to the share of each worker type in the labor force. Dark-gray areas represent

workers who report at least one paid full day/week worked from home from SIPP. Light-gray represents

those with telecommutable professions who do not work remotely. White areas represent those in non-

telecommutable occupations. Numbers in each color area report the fraction with each commuting status.

industries are 2-digitNAICS categorieswhose products are often sold far from the location

of origin, while non-tradable industries are categories whose products are mostly sold

locally.1 Using data on full-time workers in the 48 contiguous states and Washington,

D.C. from the American Community Survey (ACS), we calculate that the U.S. workforce

between 2012–2016 was composed of 28.9% college workers, 12.3% in tradable and 16.6%

in non-tradable industries; and 71.1% non-college workers, 28.8% in tradable and 42.3%

in non-tradable industries.

Who can telecommute? To measure telecommutability, i.e., the ability to telecommute,

we combine occupational classifications from Dingel and Neiman (2020) with our data.

We find that 33.6% of workers in our sample have jobs that can be done from home. We

also find that college workers and those in tradable industries are more likely to have

such a job–an observation we label Stylized Fact #1. As shown in Figure 1, 68.8% of college

workers in tradable industries have jobs that can be donemostly or completely from home,

compared to just 18.9% of non-college workers in non-tradable industries.2

Who does telecommute? These differences are compounded by further gaps in

telecommuting uptake. To measure uptake, we use data from the 2018 Survey of Income

and Program Participation (SIPP); see Appendix Section A.1 for more details. Focusing

1We use the BEA 2012 NAICS categories and divide them as follows. Tradable: Agriculture, forestry,

fishing and hunting, and mining; Manufacturing; Wholesale trade; Transportation and warehousing, and

utilities; Information; Finance, insurance, real estate and rental and leasing; and Professional, scientific,

management, administrative, and waste management services. Non-tradable: Educational, health and

social services; Arts, entertainment, recreation, accommodation and food services; Other services (except

public administration); and Public administration. Excluded: Armed Forces.

2Differences in telecommutability by industry and education have been previously documented by

Dingel and Neiman (2020) and Mongey, Pilossoph, and Weinberg (2020).
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Table 1: Frequencies of working from home, 2018

College Non-college

WFH frequency Overall Tradable Non-Tradable Tradable Non-tradable

5 days per week 5.6% 15.0% 6.7% 5.2% 2.7%

4 days per week 0.2% 0.5% 0.5% 0.2% 0.1%

3 days per week 0.3% 0.9% 0.4% 0.3% 0.1%

2 days per week 0.7% 1.9% 1.4% 0.5% 0.3%

1 day per week 2.3% 7.8% 3.7% 1.6% 0.7%

<1 day per week 90.8% 73.9% 87.3% 92.3% 96.2%

Note: The table summarizes the share of all workers, as well as workers in each education-industry group,

that report having a certain number of paid full days a week worked from home from SIPP. Self-employed

workers are excluded.

on full-time workers who are not self-employed, we find that 38% of college workers in

tradable industry with telecommutable occupations actually do work from home at least

one full paid day aweek; while uptake for non-college, non-tradable workers is only 21%.3

We dub these gaps by education and industry Stylized Fact #2.
How frequent is telecommuting? Using the data from SIPP, we investigate how often

remoteworkers dial it in fromhome. As Table 1 shows, a notable feature of the distribution

for eachworker category is bi-modality: most are full-time on-site or full-time at home.4 We

call this Stylized Fact #3. The bimodality is less pronounced for college-educated workers

in tradable industries. For them, hybrid work (i.e., one to four days per week) accounts

for over 11% of paid workdays.

Where do telecommuters live? Using data from the 2017 National Household Trans-

portation Survey (NHTS), we find a positive relationship between work-from-home fre-

quency and distance to job site, as shown in Figure 2; see Appendix Section A.3 for more

details on the data.5 We shall refer to this relationship as Stylized Fact #4. It is consistent

3We calculate 26.1/(26.1 + 42.7) ≈ 0.38, and 3.9/(3.9 + 15.0) ≈ 0.21, from Figure 1.

4An advantage of the SIPP data is that it allows us to calculate numbers for each frequency from a

single data source applying a consistent methodology. Mas and Pallais (2020) also report some numbers

related to work from home frequency, but the variance in definitions across the patchwork of data sources

obscures the bimodality that we find here. Another advantage of SIPP is that it counts full paid days worked

from home and that the sample sizes are large enough for us to focus on full-time workers. Furthermore,

SIPP allows us to observe the exact number of days per week that an individual works from home, while

other data sources, such as the Leave and Job Flexibility model of the American Time Use Survey (ATUS)

and the General Social Survey (GSS), only report intervals: i.e., “1 to 2 days a week” or “more than once a

week.” At the same time, SIPP may oversample low-income workers and this could understate the amount

of hybrid work in the data. ATUS and GSS appear to report more common hybrid work than SIPP (Davis,

Ghent, and Gregory, 2024), but sample sizes are small, and the definition of home work is different: ATUS

and GSS count any day when work was done from home, regardless of whether that work was paid or

not. We believe that these differences are why GSS suggests somewhat different patterns than what we

report here, which can be seen, for example, in Table 3 of the related Bureau of Labor Statistics news release:

https://www.bls.gov/news.release/flex2.t03.htm#cps_jf_table3.f.1.

5Zhu (2012) also found that telecommuters live at a farther distance from work than commuters.
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Figure 2: Telecommute frequency versus distance to workplace
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with telework being a way of reducing the effective commuting cost.

2.2 Covid-19: A Telework Shock

In 2018, no more than 8% of paid full workdays were remote, based on data from SIPP.

When the Covid-19 pandemic began in early 2020, lockdowns and distancing moved over

one third of the workforce from offices to their homes, as shown in Figure 3.

This sudden upheaval sparked consternation in many but, in survey after survey of

workers and managers, an interesting pattern emerged. It was all going rather better than

almost anyone had expected. Companies and workers had found ways to adjust without

losing too much productivity, and many found a lot to like about remote work. So much

so, that surveys by Barrero, Bloom, and Davis (2021) suggest that between one-quarter

and one-third of paid workdays will be remote even after the pandemic.6

There are at least four hypotheses as to what the Covid-19 telework shock really was.7

None are mutually exclusive, though some may be more important than others. And the

implications of each for the future of remote work are quite distinct.

First, there is the view that working from home during the pandemic is a purely

transitory phenomenon, and that once people are allowed to and feel safe they will

flock straight back to the office. Second, there is the view that we have experienced a

shock to preferences, norms and institutional policies aroundworking from home, driven by a

combinationof new information and the facts on theground createdby forced remotework

6Other surveys indicated that remoteworkwill bemore commonpost-pandemic: Bartik, Cullen, Glaeser,

Luca, and Stanton (2020), Ozimek (2020), Bick, Blandin, and Mertens (2021), inter alia.

7Van Nieuwerburgh (2023) describes the debate between different explanations for the rise in remote

work.
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Figure 3: Work from home during the Covid-19 pandemic
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because of the coronavirus pandemic, per a Bureau of Labor Statistics survey. Short-dashed line: the fraction

of persons who work at home at least some of the time, per the Real Time Labor Market survey by Bick and

Blandin (2021). This survey was discontinued in June 2021. Long-dashed line: the fraction of paid full days

worked at home, per the survey by Barrero, Bloom, and Davis (2021).

during the pandemic. Barrero, Bloom, and Davis (2021) take the position that working

from home was always great but social norms and stigma–combined with downstream

corporate policies–limited it. They also document a positive change in attitude by the

averageworker towards telework after having actual experiencewithworking from home.

Third, events of the past two years may amount to a technology shock. The early months

after March 2020 saw a burst of innovation directed at making remote work, work. New

software was developed and widely adopted, new policies and procedures were put in

place, sizable investments in remote-complementary physical capital were made, and

individuals and organizations did a great deal of learning by doing. Fourth, it could

be that work mode is a coordination game with multiple equilibria–if everyone is in the

office, workers want to be there, but if enough people go remote, workers prefer to stay

home.

The first hypothesis does not seem to be supported by the trends shown in Figure 3.

The share of mandated remote work has fallen from 35% in May 2020 to 5% in mid-2022.

At the same time, actualworking from home, as measured in a survey by Barrero, Bloom,

and Davis (2021), has stabilized at around 25–30%. We therefore believe it is highly likely

that some combination the latter three hypotheses are playing a role. Our theoretical

model described in Section 3 and counterfacgtual simulations in Section 5 incorporate

both preference and technology shocks. Nonetheless, in Section 5.8 we will argue that a

preference shock is more plausible as a primary explanation for changes in work-from-home

behavior than a technology shock. We leave the role of workplace coordination as a potential

topic of future research.

9



3 Model

The economy consists of a finite set I of discrete locations. Each location is populated by

a continuous measure of workers who are distinguished by two characteristics. First, each

worker has a skill level s ∈ {H,L}. College-educated workers (s = H) provide High-skilled

labor to employers, and workers without college education (s = L) provide Low-skilled

labor. Second, a worker belongs to one of two types of occupations, o ∈ {T,N}. Some

occupations are Telecommutable (o = T), i.e., amenable to remote work, while some are

Non-telecommutable (o = N) and must be performed on-site.8 The four types that are the

product of {H,L} and {T,N} are exogenous and immutable. The economy-wide fraction

of workers with education s and occupation o is denoted by lso
. Total employment of all

types of workers is fixed and normalized to one, so that lHN + lLN + lHT + lLT = 1.
Three types of output are produced in each location: tradable goods and services,

non-tradable goods and services, and floorspace, m ∈ {G,S,F}. Tradable output (m = G)

is produced by combining college- and non-college labor with floorspace, and may be

sold in any other location without paying a shipping cost. Non-tradable output (m = S)
is produced using the same three inputs, but can only be sold in the location of origin.9

Floorspace (m = F) is produced by combining land with tradable goods, and may only be

used in the same location it is built.

Work at home is modeled as an option of telecommutable workers to split their work

time between their job site and their residence. The productivity of at-home work relative

to on-site work, the elasticity of substitution between the two work modes, as well as a

preference parameter that we call the aversion to work from home vary across education

levels and industries. A worker chooses to spend more time working at home when

remote work is relatively productive, the aversion to it is relatively low, floorspace at home

is relatively cheap, and the commute to the job site is long.

3.1 Workers

All workers make three types of choices. First, they choose which industry to work in;

second, the locations of their job and their residence; and third, how to divide their re-

sulting disposable income between spending on tradables, non-tradables and housing.

Those belonging to telecommutable professions make one additional decision after choos-
ing industry, job and residence location: how to divide their labor time between working

8Examples of telecommutable occupations are architects and call center representatives. Examples of

non-telecommutable occupations include dentists and plumbers.

9Tradable output is indexed m = G as in our data it consists largely (though not entirely) of Goods, while

non-tradable is indexed m = S for Services, for the same reason.
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in the office and working at home. The first three types of choices are not unusual in a

quantitative spatial model and are discussed immediately below. The choice of how often

to work from home is described later in Section 3.1.1.

Consumption preferences are Cobb-Douglas. Optimal consumption choices for indi-

vidual worker ι of education level s and occupation o, conditional on a choice of location i
as a residence, j as a worksite, and a choice of m as an industry, imply the indirect utility

of

µm,ιξi j,ιvso
mij(θ).

Here θ ∈ [0, 1] is the fraction of time worked on-site, for the moment left undetermined;

µm,ι is the idiosyncratic preference shock over industry, drawn from a Fréchet distri-

bution Φ
ind

(µ) = exp(−µ−σ); and ξi j,ι is the idiosyncratic preference shock over residence-

workplace pairs, also drawn from a Fréchet distributionΦ
loc

(ξ) = exp (−ξ−ε). The common

component of indirect utility is

vso
mij(θ) ≡

Xs
miE

s
mj

pβi qγi

w̃so
mij(θ)

di j(θ)gi j
. (3.1)

In this expression, pi is the price of non-tradables, qi is the price of floorspace, and β, γ ∈

(0, 1) are the expenditure shares of these two categories. Xs
mi is a residential amenity and

Es
mj is an employment amenity. Disposable income w̃so

mij depends on θ in a way which we

will discuss later in this section.

The disutility of commuting dso
mij(θ) also depends on θ and is given by

dso
mij(θ) ≡ θeκti j + (1 − θ)ςs

m, (3.2)

where ti j is the time in minutes required to commute from location i to j; κ > 0 is the

elasticity of the disutility to commute time; and ςs
m > 0 represents the relative preference

of an s-educated worker in industry m to work in the office, as opposed to at home. The

worker only experiences the part of disutility which comes from commuting on the days

she commutes: the first term of equation (3.2) ranges from 0 when θ = 0, to eκti j
when

θ = 1. The latter case is a standard functional form for commuting costs in urban models

without telecommuting. The second term, representing disutility from remote work, has

the opposite relationship with θ, ranging from 0 when θ = 1 to ςs
m when θ = 0. This

functional form of the disutility of commuting highlights the role of telecommuting in

reducing the importance of distance to work.10

10A related study by Lennox (2020) builds a quantitative spatial model of Australia and studies a fall in
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In what follows, we will refer to ςs
m as the “aversion to telecommuting.” Assuming that

ςs
m takes a value greater than 1 (as it does for all worker categories in our calibration), it

lends itself to a range of interpretations, not all of which fall within the realm of worker

“preferences” or average tastes per se. For example, they could also reflectworker concerns

about career advancement, which may be easier to achieve in the office; or restrictions

against work-from-home imposed by convention, or bias, or employer regulations.11

We also allow for reasons not directly related to commuting to cause workers to prefer

shorter commutes between work and home.12 We represent these with the distance

penalty gi j ≡ eτti j
, with τ > 0 determining the strength of distance dependence.13 This

dependence is necessary for model predictions to conform with the distance-commute

frequency relationship reported in Section 2: even workers who rarely come to the office

tend to live at commutable distances from their job site. In Appendix Section H.1 we

recalibrate the model and repeat our main counterfactual assuming that gi j = 1 so the

whole cost of distance is loaded onto commuting. This results in much larger relocations

and welfare gains.

Let us designate the optimal choice of θ, discussed later, as θso
mij; and the associated

indirect utility, disposable income, and disutility of commuting as vso
mij, w̃so

mij, and dso
mij.

Given indirect utilities characterized by equation (3.1), and the Fréchet distribution of

shocks, it is straightforward to show that the measure of workers of education level s and
occupation o who choose industry m, residence i and job site j is given by

πso
mij = lsoπso

mπ
so
i j|m, (3.3)

where πso
m is the probability that a worker with education level s and occupation o chooses

industry m, and πso
i j|m is the probability that such a worker chooses the location pair (i, j),

transport costs as a proxy for an increase in remote work.

11To put it another way: Does ςs
m > 1 mean that workers “hate” remote work? Certainly not! As we

have just mentioned, there are many other well-known non-pecuniary barriers to telecommuting. If we take

at the evidence from Mas and Pallais (2020) and He, Neumark, and Weng (2021) that the average worker

values remote flexibility, calibrated values of ςs
m > 1 imply that these other impediments turn out to be large

enough to dominate workers’ positive taste for remote work.

12We see three possible interpretations: (1) Spatial frictions in the process of finding jobs and forming

attachments to residential locations, leading to spatial covariance in idiosyncratic preferences. (2) Employees

with longer tenure on-site, who have already established residential attachments nearby, may bemore likely

to begin remote work. (3) Company policies may discourage moving far away, perhaps due to the option

value of occasional office visits.

13An alternative specification could embed this distance penalty in the distribution of preference shocks,

so that workers are less likely to draw a shock with high value for a pair of distant locations.
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conditional on having chosen industry m. These two probabilities are given by

πso
m =

[∑
i
∑

j

(
vso

mij

)ε] σε
∑

m′
[∑

i
∑

j

(
vso

m′i j

)ε] σε and πso
i j|m =

(vso
mij)

ε∑
i′
∑

j′(vso
mi′ j′)

ε
. (3.4)

Choice probabilities πso
mij allow us to characterize aggregate allocations of residents and

jobs. For example, the residential population (indexed by R) of type (s, o) workers in

location i is
Nso

Ri =
∑

m

∑
j

πso
mij. (3.5)

Summing πso
i j|m over j, we obtain the probability that a worker chooses to live in location i:

πso
i|m = (

∑
i′
∑

j′(vso
mi′ j′)

ε)−1Xs
mip
−β
i q−γi CMAso

i|m. Summing πso
i j|m over i, we obtain the probability

that a worker in chooses to work in location j: πso
j|m = (

∑
i′
∑

j′(vso
mi′ j′)

ε)−1Es
mjFMAso

j|m. In these

two expressions, CMAso
i|m and FMAso

j|m are commuter market access (CMA) and firmmarket

access (FMA). These two variables are measures of the access to jobs from residential

location i and the access to workers from workplace location j, and are defined as:

CMAso
i|m ≡

∑
j

Es
mjw̃

so
mij

dso
mijgi j

and FMAso
j|m ≡

∑
i

Xs
miw̃

so
mij

pβi qγi dso
mijgi j

. (3.6)

The supply of on-site work days (indexed by WC) by workers of skill level s at job site j
and the supply of remote work days (indexed by WT) are given by

Ns
WCj =

∑
m

∑
i

[
θsT

mijπ
sT
mij + πsN

mij

]
and Ns

WTj =
∑

m

∑
i

(1 − θsT
mij)π

sT
mij. (3.7)

Finally, the expected utility (and our measure of welfare) of a worker with education s and
occupation o is

Vso = Γ
(
ε − 1
ε

)
Γ
(
σ − 1
σ

) ∑
m

∑
i

∑
j

(
vso

mij

)ε
σ
ε


1
σ

, (3.8)

where Γ(·) is the Gamma function.

3.1.1 Allocation of Time Between On-Site and Remote Work

Workers supply one unit of work time inelastically. This is a common assumption. What is

different in our model is that some workers–those in telecommutable occupations–choose

how to divide their work time between the job site and home. In a given work location,
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whether on-site or at home, labor time n is combined with floorspace h in a Cobb-Douglas

production function to produce effective labor: nαh1−α
.14

Tasks done at home may be different from those done at the job site. Reflecting this,

overall effective labor supply is a constant elasticity of substitution combination of labor

on-site andat home,with the elasticity of substitution for each education level and industry

ζs
m > 1:

zso
m(θ, hC, hT) =

[(
θαh1−α

WC

) ζs
m−1
ζs

m +
(
νs

m(1 − θ)αh1−α
WT

) ζs
m−1
ζs

m

] ζs
m

ζs
m−1

. (3.9)

Parameter νs
m > 0 is the relative productivity of working from home. It represents all

possible reasons why a given worker may produce a different quantity of output while

working at home, such as a different work environment, lack of supervision, or the

difficulty of coordinating with co-workers. Variables hWC and hWT are the amounts of

on-site and home floorspace, respectively, rented by the worker.15 A worker of education

level s in industry m takes as given that they will be paid a wage ws
mj for each unit of

effective labor they supply to their employer. Thus, the worker’s disposable income is the

compensation paid by the firm less floorspace expenses,

w̃so
mij(θ) ≡ ws

mjz
s
m(θ, hWC, hWT) − q jhWC − qihWT.

Income-maximizing floorspace choices of a worker who commutes to the job site with

frequency θ yield optimal effective labor supply zso
mij(θ) =

(
(1 − α)ws

mj

)(1−α)/α
Ωso

mij(θ), and
disposable income

w̃so
mij(θ) = α (1 − α)

1−α
α (ws

mj)
1
αΩso

mij(θ), (3.10)

where

Ωso
mij(θ) ≡

[(
θαq−(1−α)

j

) ζs
m−1

1+α(ζs
m−1) +

(
νs

m(1 − θ)αq−(1−α)
i

) ζs
m−1

1+α(ζs
m−1)

] 1
α

1+α(ζs
m−1)

ζs
m−1

. (3.11)

Finally, in order to choose how much time to work on-site and at home, a telecom-

mutable worker compares the benefits and costs of working on-site. Maximizing the part

of indirect utility (3.1) that depends on commuting frequency, w̃so
mij(θ)/di j(θ), with respect

14The need to use floorspace to produce output from home is consistent with Stanton and Tiwari’s (2021)

finding that, conditional on location, income, and family structure, telecommuters own larger houses.

15For simplicity of exposition, floorspace choice is done by the worker; firms’ payments to workers

compensate both labor and floorspace. There is an isomorphic specification in which firms rent floorspace

directly.
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to θ, we obtain

θsT
mij =

1 +

νs
m

(
q j

qi

)1−αζ
s
m−1 (

eκti j

ςs
m

)1+α(ζs
m−1)


−1

. (3.12)

Thus, a worker chooses to work remotely more often, i.e., chooses lower θ, when telework

is relatively productive (large νs
m), floorspace at home is relatively cheap (large q j/qi), the

aversion to work from home is low (small ςs
m), and the commuting cost is high (large ti j).

3.1.2 Remote/On-Site Time Complementarity and Corner Time Allocations

Imperfect substitution between on-site and remote work implies that all workers in

telecommutable occupations choose an interior θ. At first glance this might seem incon-

sistent with large numbers of workers making “corner” choices to work nearly full-time

in the office or full-time at home. Yet, in Table 1 we see that not only are corner choices

common, but both opposite corner choices are relatively more frequent than intermediate

choices (stylized fact #3). More puzzling still, if we skip ahead to peek at Section 4, we see

that the model has no trouble replicating this pattern.

What makes this possible is the distribution of job-residence location pairs. From

equation (3.12) we can see that workers choosing these pairs with high ti j will choose

low θ. Idiosyncratic location preferences ensure there is always some demand for each

location pair, and globally there are many more pairs with high ti j than low; it does not

seem unlikely at all that this larger mass of high-distance pairs could generate a mode

near θ = 0. Location pairs with with low ti j are relatively few, but disproportionately

valuable because commuting is costly. Again, it seems perfectly natural that this could

generate another mode near θ = 1.

3.2 Firms

In each location there are many perfectly competitive firms producing tradable products,

and likewise producing non-tradable products. A firm in industry m and location j
produces output

Ymj = Amj

[
ωmj

(
yL

mj

) ξ−1
ξ

+ (1 − ωmj)
(
yH

mj

) ξ−1
ξ

] ξ
ξ−1

, (3.13)

where ys
mj represents the total effective labor rented from workers with education s, ωmj

determines the weight of non-college labor in the production function, Amj is the produc-

tivity of industry m in location j, and ξ is the elasticity of substitution between college and

non-college labor. In our setup, the decision of how to divide labor time between on-site
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and at-homework is made by theworker, and the firm is ready to purchase howevermuch

effective labor results from the worker’s choices.16

The firm chooses labor inputs ys
mj so as to maximize profit: pmjYmj − wL

mjy
L
mj − wH

mjy
H
mj.

Profit maximization implies the following equilibrium relationship between non-college

wages and output prices in each industry,

wL
mj

pmj
= Amjω

ξ
ξ−1

mj

1 +

(
1 − ωmj

ωmj

)ξ wL
mj

wH
mj


ξ−1

1
ξ−1

. (3.14)

Since there are no transport costs for shipping the output of the tradable sector, the price

of tradable products is a numeraire: pGj = 1 for all j. Firms in the non-tradable sector can

only sell their product locally and thus pSj ≡ p j varies by location. Meanwhile, optimal

use of inputs implies that the college premium has the following relationship to the input

levels of each skill type:

wH
mj

wL
mj

=
1 − ωmj

ωmj

yL
mj

yH
mj


1
ξ

. (3.15)

3.3 Developers

Floorspace is demanded by workers both for residential use and as a production input. In

each location, there is a large number of perfectly competitive developers which produce

floorspace using technology

Hi = K1−ηi
i

(
φiLi

)ηi
, (3.16)

where Ki and Li are the inputs of the tradable good and land, and ηi is the location-specific

share of land in the production function. We make a simplifying assumption that the

production of floorspace does not employ labor directly. Each location is endowed with

Λi units of buildable land which serves as the upper bound on the developers’ choice

of land: Li ≤ Λi. Parameter φi stands for the local land-augmenting productivity of

floorspace developers. Let qi be the equilibrium price of floorspace. Then the equilibrium

16There may be benefits of explicitly modeling firms’ preferences over on-site versus at-home work. For

example, if there positive externalities associated with on-site work, firms may want to encourage it. At the

same time, Brown and Tousey (2023) document that the gap between workers’ preferences and managers’

plans for the share of remote work has halved between July 2020 and December 2022. This suggests that

optimal choices of firms may not be very different from those of workers. See the “Productivity andWelfare

Pack” extension to Barrero, Bloom, and Davis (2021) for an example of a model where firms decide on how

often employees are allowed to work from home.
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supply of floorspace in location i is

Hi = φi(1 − ηi)
1−ηi
ηi q

1−ηi
ηi

i Li. (3.17)

3.4 Market Clearing

There are five markets that need to clear in each location in an equilibrium: the market

for college labor, the market for non-college labor, the market for non-tradable output, the

market for floorspace, and themarket for land. ByWalras’ Law, the economy-widemarket

for tradables clears as long as the other I × 5 local markets clear.

Labor markets clear when the demand for effective labor of each education level equals

the supply, ys
mj =

∑
o
∑

i π
so
mijz

so
mij, which implies that equilibrium effective labor supply is

ys
mj =

(
(1 − α)ws

mj

) 1−α
α

∑
o

∑
i

πso
mijΩ

so
mij. (3.18)

Applying equation (3.18) to equation (3.15), we obtain the equilibrium college wage pre-

mium,

wH
mj

wL
mj

=

(
1 − ωmj

ωmj

) αξ
1+α(ξ−1)


∑

o
∑

i π
Lo
mijΩ

Lo
mij∑

o
∑

i π
Ho
mijΩ

Ho
mij


α

1+α(ξ−1)

. (3.19)

Wage levels can then be found by plugging in this expression in equation (3.14).

Profit-maximization and zero profits imply the following equilibrium supply of the

non-tradable product in location j,

pSjYSj =
(
pSjASj

) 1
α (1 − α)

1−α
α ω

ξ
α(ξ−1)

Sj

∑
o

∑
i

πLo
SijΩ

Lo
Sij


1 +

(
1 − ωSj

ωSj

)ξ wL
Sj

wH
Sj


ξ−1

1+α(ξ−1)
α(ξ−1)

. (3.20)

Let total disposable income in residential location i be Wi ≡
∑

s
∑

o
∑

m
∑

j π
so
mijw̃

so
mij. Non-

tradables are demanded only by workers for consumption and total spending on the

non-tradable output in any residential location i is βWi. This allows us to construct the

following market-clearing condition in the market for non-tradables:

pSjASj =

(
βWi

)α
(1 − α)1−αω

ξ
ξ−1

Sj

(∑
o
∑

i π
Lo
SijΩ

Lo
Sij

)α
1 +

(
1 − ωSj

ωSj

)ξ wL
Sj

wH
Sj


ξ−1

−
1+α(ξ−1)
α(ξ−1)

. (3.21)

Demand for residential floorspace in location i is HRi = γWi/qi. Demand for on-site
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office space is HWCi =
∑

s
∑

o
∑

m
∑

j π
so
mjih

so
mji,WC, and demand for home office space is HWTi =∑

s
∑

m
∑

j π
sT
mijh

sT
mij,WT. Then, total local floorspace demand is

Hi = HRi + HWCi + HWTi. (3.22)

Floorspace demand also determines the demand for land. Land is owned by landlords

and, since there are no alternative uses of land, it is optimal for landlords to sell all

buildable land to developers: Li = Λi for all i. Land owners receive a share ηi of the total

revenues from floorspace sales, qiHi. The price per unit of land must then be equal to total

earnings divided by the quantity of land:

li =
ηiqiHi

Λi
. (3.23)

Landlords use proceeds from land sales to consume the tradable good only, as in Monte,

Redding, and Rossi-Hansberg (2018). Thus, the welfare of landlords is simply the total

value of land in the economy,

∑
i liΛi. Finally, optimal decisions of developers imply the

following relationship between land prices and floorspace prices:

qi =
1

ηηi
i (1 − ηi)1−ηi

(
li

φi

)ηi

. (3.24)

3.5 Externalities

The productivity of industry m in location j is determined by an exogenous component,

amj, and an endogenous component that is increasing in the local density of on-site and

remote employment:

Amj = amj

(
NWCj + ψNWTj

Λ j

)λ
. (3.25)

Parameter λ > 0 is the elasticity of productivity with respect to employment density, and

ψ ∈ [0, 1] is the degree of remote workers’ participation in productive externalities. These

externalities include learning, knowledge spillovers, and networking that occur as a result

of face-to-face interactions between workers. When workers are working from home, they

may not participate fully in interactions that give rise to these externalities. As we will

see, the value of ψ has important consequences for welfare effects of telecommuting.

Similarly, the residential amenity in location i is determined by an exogenous com-

ponent, xs
mi, and an endogenous component that depends on the density of residents:
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Xs
mi = xs

mi

(NRi

Λi

)χ
, (3.26)

where χ > 0 is the elasticity of amenities with respect to the local density of residents.17

The positive relationship between residential density and amenities represents in reduced

form the greater propensity for amenities, such as parks or schools, to locate in proximity

to greater concentrations of potential users.18

3.6 Equilibrium

Definition 3.1. Given local fundamentals, amj, xs
mi, Es

mj, φi, ηi, and Λi; bilateral commute

times, ti j; population shares, lso
; and economy-wide parameters, νs

m, ς
s
m, ψ, α, β, γ, ε, σ,

ζs
m, ξ, κ, τ, λ, and χ; a spatial equilibrium consists of allocations of workers to industries,

residences, and job-sites, πso
mij; allocations of work time between on-site and remote, θso

mij;

productivities, Amj; residential amenities, Xs
mj; college and non-college wages, wH

mj and

wL
mj; effective labor supplies, ys

mj; prices and supplies of floorspace, qi and Hi; prices and

supplies of non-tradable goods, pi and YSi; and land prices, li; such that equations (3.3),

(3.12), (3.25), (3.26), (3.14), (3.19), (3.18), (3.24), (3.17), (3.21), (3.20), and (3.23) are satisfied.

3.6.1 Existence and Uniqueness

While ourmodel has a number of extensions compared to a “standard” quantitative spatial

equilibrium model with commuting such as Ahlfeldt, Redding, Sturm, and Wolf (2015),

our main innovation is the introduction of work from home. In Appendix Section B, we

evaluate equilibrium properties of a simplified model with exogenous floorspace supply,

single industry, and no heterogeneity in education or occupation, but with remote work.

We show that the introduction of telecommuting narrows the range of parameter

values for which a unique equilibrium is guaranteed. In a standard model, the extent to

which a highly productive location attracts employment is amplified via agglomeration

externalities but is dampened as the number ofworkerswilling to commute to this location

daily is limited. This is because commuting costs combined with idiosyncratic location

preferences constitute a congestion force. In a model with work from home, productive

17We abstract from spatial spillovers of productivity or amenities across locations. They are highly

localized, as found in Ahlfeldt, Redding, Sturm, and Wolf (2015) and other studies. Given that locations in

our quantitative model are relatively large, the effect of these spillovers may not be first-order.

18We assume that all residents contribute equally to amenity externalities, although it is also possible that

telecommuters contribute more by spending more time in the area of their residence. Another important

channel of amenity adjustments are local services financed by state or municipal taxes. Agrawal and

Brueckner (2022) study how work from home and resulting shifts in residents and jobs may affect local tax

revenues.
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locations have a greater access to potential workers because they do not have to commute

daily. As a result, even modest values of the productive externality parameter λ can lead

to multiple equilibria.

4 Quantification

In this section we describe how we build our model into a quantitative description of

industry, residence, workplace, and telecommuting decisions made by U.S. workers in the

years leading up to 2020. We focus our analysis on the 48 contiguous United States and

the District of Columbia from 2012–2016.19 We define a model location as the intersection

of a Census Public Use Microdata Area (PUMA) and a county.20 Defining locations this

way and dropping two locations with missing wage data, we end up with 4,502 model

locations. Then we must populate them with relevant data.

4.1 Data

Residents, jobs, and commuting. The total number of workers by education level is

calculated from the ACS data as described in Section 2. To obtain information on resi-

dent population, jobs, and commuting flows, we turn to the LEHD Origin-Destination

Employment Statistics (LODES) database, taking averages across 2012–2016. LODES pro-

vides workplace and residence job counts separately by education level or by industry at

the Census block level, which we aggregate to the level of model locations. We define

industry and education as described in Section 2.

Wages. We use the Census Transportation Planning Products (CTPP) database and

the American Community Survey (ACS) microdata for 2012–2016 to obtain estimates of

average wage by industry m and education s for each location j: ŵs
mj. In our model, firms

pay workers for their labor as well as for floorspace expenses. We convert observed wages

ŵs
mj into their model counterpart ws

mj by applying floorspace expenditures predicted by

the model. More details can be found in Appendix Section A.2.

Non-tradable goods prices. We use the Bureau of Economic Analysis Regional Price

Parities for the “Services other than real estate” category as a proxy for non-tradable

19The choice of the time period is motivated by the fact that our wage and commuting time data is

aggregated at five-year intervals and this is the most recently available interval prior to the pandemic.

20PUMA is the smallest geography for which individual-level data is publicly available. The Census

Bureau designs PUMAs to have between 100,000 and 200,000 residents. In densely populated areas, where

there are many PUMAs to a county, each PUMA is a model location. This allows us to take advantage of

geographically-detailed data and study patterns within metro areas. In rural areas, where there may be

several counties in a single PUMA, each county is a model location.
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output prices. We use the data at the metropolitan statistical area (MSA) level, if available,

and apply the same price level to all locations within a single MSA. For the remaining

locations, we apply the state non-metropolitan price level from the database.

Floorspace prices. To obtain local rental prices of floorspace, we estimate hedonic rent

indices for each PUMA using self-reported housing rents from the ACS for the period

from 2012 to 2016. Appendix Section A.4 provides more details.

Commute times. Bilateral travel times are obtained from the CTPP survey data for

the period 2012–2016, with some imputations to fill in missing trajectories. Details can be

found in Appendix Section A.5.

Work from home. To infer values of some work from home parameters, we use data

from the Survey of Working Arrangements and Attitudes (SWAA) conducted by Barrero,

Bloom, and Davis (2021) on a monthly basis since May 2020. The survey is representative

of the U.S. labor force.

4.2 Parameterization

4.2.1 Work from Home Parameters

The distribution of worker types by education and ability to telecommute is constructed

as follows. First, we use the fractions of college and non-college workers we calculated in

Section 2. Then, we calculate the average answer to the question “Are you able to do your
job from home (at least partially)?” for each of the two education types from the SWAA.

We find that nearly 50% of all workers in our model can work remotely.21 In particular,

40.6% of non-college and 72.7% of college workers can work from home. Table 2 shows

the distribution of worker types implied by these numbers.22

The relative productivities of remote work for each type of a worker, νs
m, are calibrated

as follows. The SWAA asked respondents about their productivity of working from home.

We first calculate the average response to the question “How efficient are you WFH during
COVID, relative to on business premises before COVID? (%)” for each type of worker. We

interpret answers to this question as a self-assessed productivity of remote versus on-site

21Some respondents who answered “yes” during the pandemic might have responded “no” before

the pandemic, even if their job did not change. We view a “yes” response as an indication that it is

technologically possible to perform at least some job tasks at home. Given that communication technology

used for remote work during the pandemic largely existed before 2020 and given that changes in the

occupational composition of the economy since 2019 have been minimal, we view the average responses to

this question as a measure of the fraction of jobs that can be performed at home. This number is higher than

the 37% estimated by Dingel and Neiman (2020). However, we believe this to be an underestimate, given

that, according to Barrero, Bloom, and Davis (2021), 30% of all paid work days are worked from home.

22While the levels are different, these numbers are consistent with the evidence reported in Figure 1.
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work during the pandemic, and wewill use these numbers to calibrate the post-pandemic

economy in Section 5. Then, we calculate the average response to the question “Relative to
expectations before COVID, how productive are youWFH during COVID? (%)” for each type of

worker. We interpret answers to this question as a self-assessed improvement in remote

work productivity during the pandemic relative to the pre-pandemic period. Finally,

we divide the average response to the first question by one plus the average response

to the second question, and obtain an estimate of the pre-pandemic work from home

productivity. These numbers are reported in Table 2. We find that remote work is nearly

as productive as on-site work with relative productivity ranging from 0.9896 to 0.999.23

These values are consistent with existing empirical evidence.24

The calibrated values of aversion to remote work ςs
m and the elasticity of substitution

between on-site and remote work ζs
m are shown in Table 2. While we jointly calibrate these

and several other parameters, these two sets of parameters are primarily determined by

two sets of targets.

The first set of targets is comprised ofmean fractions of timeworked on-site forworkers

in each industry and education group θ̄s
m ≡

∑
o
∑

i
∑

j π
so
mijθ

so
mij/

∑
o
∑

i
∑

j π
so
mij.We target each

ratio to match the type-specific averages calculated from SIPP data.

The second set of targets consists of the variance for each group of the choice of on-site

work frequency for choices which fall between 1 and 4 days per week, i.e. 0.2 ≤ θ ≤ 0.8.25
These variances are calculated from the SIPP data, as described in Section 2. The variances

are primarily used to calibrate the elasticity of substitution between on-site and remote

work: the more substitutable the two modes are, the more likely is a worker to choose a θ

close to 0 or 1, and the larger will be the variance of θ’s in the quantitative model.

The calibrated elasticities of substitution between remote and on-site work are higher

23Davis, Ghent, and Gregory (2024) calibrate pre-pandemic relative productivities of remote work to

be approximately 0.35 for both high and low-skilled workers. Combined with worker-type-specific TFP

estimates, this implies that pre-2020, a full-time remote worker would only earn slightly over one third

of the wage of an otherwise identical non-remote worker. This same paper estimates a single elasticity

of substitution for all worker categories, finding a value of 3.5, squarely in the middle of our calibrated

values. Using a different specification, the aforementioned study also estimates work from home preference

parameters. They find a positive preference for having the option of working from home, which helps

rationalize pre-Covid existence of remote work in spite of its low (estimated) productivity.

24Work from home productivity is the subject of active current research. A randomized study conducted

during the pandemic by Bloom, Han, and Liang (2022) finds no differences in promotions and performance

evaluations, lower quit rates, and less frequent sick leaves, suggesting that work from home is at least as

productive as work in the office. Other studies that find that remote and/or hybrid work are at least as

productive as in-person work include Bloom, Liang, Roberts, and Ying (2015) and Choudhury, Khanna,

Makridis, and Schirmann (2022), among others. Studies that find productivity losses include Emanuel,

Harrington, and Pallais (2022) and Gibbs, Mengel, and Siemroth (2022).

25We target this middle range so that the moment is more distinct from the average freqency, which is

heavily influenced by the masses of workers with θ < 0.2 and θ > 0.8.
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Table 2: Work from home parameters

Parameter Description Value Source or Target

Distribution of worker types:

lLN
non-college, non-telecom. 0.4225 ACS and Barrero, Bloom, and Davis (2021)

lLT
non-college, telecommutable 0.2884 —

lHN
college, non-telecommutable 0.0790 —

lHT
college, telecommutable 0.2101 —

Productivity of remote work:

νL
S non-college, non-tradable 0.9929 Barrero, Bloom, and Davis (2021)

νL
G non-college, tradable 0.9961 —

νH
S college, non-tradable 0.9896 —

νH
G college, tradable 0.9990 —

Aversion to work from home: Average commuting frequency:

ςL
S non-college, non-tradable 3.3599 θ̄L

S = 0.970
ςL

G non-college, tradable 2.7522 θ̄L
G = 0.939

ςH
S college, non-tradable 2.8196 θ̄H

S = 0.913
ςH

G college, tradable 2.3985 θ̄H
G = 0.817

Elasticity of substitution between

on-site and remote work:

Variance of WFH frequency:

ζL
S non-college, non-tradable 4.1884 Var(θL

S|θ ∈ [0.2, 0.8]) = 0.0356
ζL

G non-college, tradable 3.8924 Var(θL
G|θ ∈ [0.2, 0.8]) = 0.0367

ζH
S college, non-tradable 4.3548 Var(θH

S |θ ∈ [0.2, 0.8]) = 0.0351
ζH

G college, tradable 3.0330 Var(θH
G |θ ∈ [0.2, 0.8]) = 0.0273

κ Elasticity of commuting cost to

commuting time

0.0086 Ahlfeldt, Redding, Sturm, and Wolf (2015)

and Tsivanidis (2019)

τ Elasticity of distance penalty gi j to

commuting time

0.0024 Ratio between non-telecommuters’ and

telecommuters’ distance to work = 0.338

ψ Contribution of telecommuters to

productivity externalities

{0,1} We run separate counterfactuals with

ψ = 0 and ψ = 1

Note: The table lists model parameters directly related to work from home.

in the non-tradable than in the tradable industry, with values ranging from 3.03 to 4.35.

The calibrated aversion parameters range from 2.4 to 3.36, indicating large non-pecuniary

barriers to remote work, especially for non-college workers in the non-tradable sector.

College workers in the tradable industry have the smallest aversion to working from

home but their at-home and on-site effort is less substitutable. On the one hand, such

workersmay have enjoyedmore flexibleworking arrangements even before the pandemic.

On the other hand, in the knowledge-intensive industries (finance, IT) which make up

much of the tradable sector, there may be greater complementarity between individual

tasks that are relatively easy to do at home, and knowledge-sharing and coordination

which are more efficiently accomplished on-site.

In our model, worker’s utility is decreasing in commuting time for two reasons. First,
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greater commuting time increases the disutility of commuting (with elasticity κ). Second,

it increases the distance penalty (with elasticity τ). Note that most existing urban models

with commuting did not have remote work and, in terms of our model, had all workers

have θ = 1. Therefore, because for a worker with θ = 1 we have gi jdso
mij = e(κ+τ)ti j

, the term

κ + τ in our model is analogous to the elasticity of the commuting cost with respect to

commuting time in a model without remote work. Using the same functional form of

the commuting cost, Ahlfeldt, Redding, Sturm, and Wolf (2015) estimate the elasticity of

about 0.01, while Tsivanidis (2019) estimates a value of 0.012. We set κ + τ = 0.011, the
average of these two estimates.

Thenwe calibrate τ as follows. If a person is unable to telecommute, it is observationally

equivalent for them to live close to their work because of the commute cost di j or because

of the distance penalty gi j. If they can telecommute, the distinction becomes important.

If commuting cost is all that matters, our model predicts that the average telecommuter

will live very far from their workplace. If, on the other hand, distance penalty is all

that matters, there is no substantive difference between commuters and telecommuters

in terms of residential location choices. Either of these extremes are inconsistent with

the stylized fact #4 presented in Section 2. Thus, we first calculate the average distance in

kilometers between residence i and job site j, disti j, separately for “full-time commuters”

(defined as those with θ > 0.9) and telecommuters (θ ≤ 0.9). Then, we set τ so that the

ratio of average distances, is the same in the model and in the data, and find τ = 0.0024.
Finally, we recover κ = 0.011 − τ = 0.0086.

Due to the lack of empirical evidence and appropriate calibration targets, wedonot take

a stance on the relative contribution of remote workers to the productive externalities, ψ.

Instead, in our main counterfactual we will assume that remote work does not contribute

to productivity at all, i.e., use ψ = 0. Then in Section 5.7 we study a scenario in which

remote work does not inhibit productive externalities, i.e., ψ = 1.

4.2.2 Other Parameters

We set the consumption share of housing, γ = 0.24, following Davis and Ortalo-Magné

(2011). Spending on non-tradable goods is an important determinant of wages in the non-

tradable sector. Therefore, we calibrate β, the expenditure share of non-tradable goods,

so that the ratio between the mean wages in the tradable and non-tradable sectors, is the

same in the model and in the data.

Valentinyi and Herrendorf (2008) estimate that the combined share of land and struc-

tures in the U.S. is 0.18. Thus, we set the labor share in the production of tradable and

non-tradable goods, α, equal to 0.82. The elasticity of substitution between college and
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Table 3: Other parameters

Parameter Description Value Source or Target

γ Consumption share of housing 0.24 Davis and Ortalo-Magné (2011).

β Consumption share of

non-tradables

0.6978 Ratio between average wages in the

tradable and non-tradable sectors = 1.05

α Labor share in production 0.82 Valentinyi and Herrendorf (2008)

ξ Elasticity of substitution between

college and non-college labor

2 Card (2009)

λ Elasticity of local productivity to

employment density

0.086 Heblich, Redding, and Sturm (2020)

χ Elasticity of local amenity to

population density

0.172 Heblich, Redding, and Sturm (2020)

σ Fréchet elasticity of industry shock 1.4 Lee (2020)

ε Fréchet elasticity of location shock 4.026 Estimated

Note: The table lists model parameters not directly related to work from home.

non-college labor, ξ, is set to 2, in the middle of the range between 1.5 and 2.5 reported by

Card (2009).

We borrow the values of the elasticities of local productivity and amenitieswith respect

to density fromHeblich, Redding, and Sturm (2020), and set λ = 0.086 and χ = 0.172.26 To

examine the sensitivity of our results to these two values, we run counterfactuals where

each of these values is set to zero. Naturally, magnitudes of reallocations are slightly

smaller but none of the results change in any major way; see Appendix F for details.

We set the Fréchet elasticity of the distribution of industry preference shocks, σ, equal

to 1.4, following Lee (2020). To obtain the value of the Fréchet elasticity of location

preference shocks ε, we estimate (κ+ τ)ε from the relationship between commuting flows

and commuting times using Poisson pseudo maximum likelihood (PPML). Our estimate

of (κ + τ)ε is 0.0443. Then, to recover ε, we use the value κ + τ = 0.011, as discussed

in Section 4.2.1, and obtain ε = 0.0443/0.011 = 4.026. Estimation details are provided in

Appendix Section C.1.

4.2.3 Local Parameters

To allow for the possibility that in our counterfactuals floorspace development responds

differently to changes in demand across locations, we let the elasticity of floorspace supply,

26Meta-analysis of estimated density elasticities in Ahlfeldt and Pietrostefani (2019) finds an average

productivity elasticity of 0.06 from 15 studies (category 2 from Table 3). The elasticity of amenities depends

on the type of amenity, and averaged over 67 studies the estimates vary from −0.04 to 0.24 (categories 5, 6,

8, 9, and 10 from Table 3).
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(1−ηi)/ηi, vary by location. Baum-Snow and Han (2021) estimate elasticities of floorspace

supply with respect to prices for Census tracts in over 300 metro areas.27 We aggregate

these to the level of ourmodel locations using populationweights. The advantage of these

estimates is their geographic granularity. At the same time, they are significantly lower

than previous studies have found.28 In Appendix Section H.3 we show that the results of

our counterfactuals change little if we use higher values of the elasticity.

We also need to quantify several vectors of location-specific fundamentals, and we

do this by inverting the model. These fundamentals are land-adjusted exogenous pro-

ductivity ãmi ≡ amiΛ
−λ
i , land-adjusted exogenous amenities x̃s

mi ≡ xs
miΛ

−χ
i , land-adjusted

productivity of floorspace developers φ̃i ≡ φiΛi, workplace amenities Es
mj, and education-

specific productivity shifters ωmj.29

These parameters are pinned down by using the following local data. Labor produc-

tivity parameters ãmi andωmj are determined from observedwages by industry and skill.30

Floorspace productivity parameter φ̃i is determined from observed housing rents. Resi-

dential amenities x̃s
mi are determined from the total population of a location. In the data,

we observe total residents and employment by industry or education for each location,

but not by both characteristics at the same time. This requires us to assume that residence

and workplace amenities can be decomposed into education- and industry-specific com-

ponents as xs
mi = xmixs

i and Es
mj = EmjEs

j. Needless to say, in practice locations differ inmany

other important ways, e.g., climate, access to transportation, etc. All these differences are

implicitly captured by the amenity parameters.

The following result states that, given observed data and economy-wide parameters,

there are unique vectors of location-specific fundamentals, consistentwith an equilibrium.

Proposition 1. Given the data, NR,mi, NW,mj, Ns
R,i, Ns

W, j, l
so, ŵs

mj, qi, pi, ti j, estimated local land
shares ηi, and economy-wide parameters, α, β, γ, ε, ζ, κ, λ, νs

m, ςs
m, ξ, σ, τ, χ, and ψ, there exists

a unique set of vectors, ãmi, xmi, xs
i , φ̃i, Emj, Es

j, and ωmj, that is consistent with the data being an

27We take the 2011 total floorspace elasticities estimated with the FMM-IV model (variable

gamma11b_space_FMM). For locations with missing elasticity data, we impute the elasticities by first re-

gressing available elasticities on a cubic polynomial of population density (the R2
of this regression is 0.66)

and then using the regression prediction in locations where elasticity estimates are not available.

28At the level of our model locations, elasticities vary from 0.08 to 1.57, and the population-weighted

average is 0.68. For comparison, Saiz (2010) estimates the elasticities to be on average 1.75 at the metro area

level, and Baum-Snow and Han (2021) discuss the reasons for this discrepancy. Recall that in our model

parameter ηi corresponds to the land share in housing production. The values of elasticities that we use

imply that ηi ranges from 0.39 to 0.93 and the average is 0.6. Thus, the average land share in our model is

higher than most existing estimates (e.g., Albouy and Ehrlich (2018) find that the land share is about 1/3 in

the U.S.)

29Separate identification of land area Λi is not required for the model.

30In our model, wages include firms’ payments for labor and floorspace expenditures. When calibrating

ãmi and ωmj, we only use the portion of wages that are paid for labor effort.
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equilibrium of the model.

Proof. The proof follows closely the proof of a similar result in Ahlfeldt, Redding, Sturm,

and Wolf (2015). See Appendix Section C.3 �

4.3 Model Fit

Stylized facts about telecommuting. How does our model do in matching the stylized

facts laid out in Section 2.2? For stylized fact #1, while we match the fraction of telecom-

mutable workers by education and the total number of workers in each industry during

our calibration, themodel endogenously produces the fraction of telecommutableworkers

by industry. Figure 1 reported that the share of those who cannot work remotely is 81.1%

for non-college workers in the non-tradable sector, 71.1% for non-college workers in the

tradable sector, 46.7% for college workers in the non-tradable sector, and 31.2% for col-

lege workers in the tradable sector. The corresponding numbers in our model are 59.8%,

58.9%, 28.4%, and 25.7%.31 Though the ranking is preserved, the industry gap is smaller

than in the data. This is not surprising as we do not model the structural links between

occupations and industries that almost certainly drive most of the gap in the data.

For stylized fact #2, ourmodel successfully produces the gap in telecommuting uptake for
each worker type. Figure 1 showed that the fraction of those whowork from home at least

one paid full day per week is 3.9% among non-college workers in the non-tradable sector,

7.8% for non-college workers in the tradable sector, 12.7% for college workers in the non-

tradable sector, and 26.1% for college workers in the tradable sector. The corresponding

numbers in our model are nearly identical: 3.2%, 7.3%, 10.3%, and 27.6%.

Themodel ably reproduces stylized fact #3, as demonstrated in Figure 4. By targeting the

mean frequency for each education-industry pair and the variance for the interior of the

distribution, θ ∈ [0.2, 0.8], we can reproduce the heavy right tail and, to some extent, the

bimodality of the distribution. One exception is the distribution for college graduates in

tradable industries. Due to the relatively low calibrated elasticity of substitution between

on-site and remote work, our model generates a lower number of full-time commuters

compared to the data. Stylized fact #4we match by construction, as the relative wages and

relative distance to the job site of telecommuters are calibration targets.

Commuting flows. We match residents and jobs by education and industry in each

location, but leave the model free to predict commuting flows between locations. Thus

31The levels are lower because the data we use to measure the ability to telecommute in the model is

different from the data we used in Section 2. See Section 4.2.1 for details.
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Figure 4: Telecommute frequency, data vs. benchmark model
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Note: “Data” reflects averages from SIPP, as described in Section 2. A bar at a given θ includes values θ±0.1.
Values of θ > 0.9 are included with θ = 1; values < 0.1 with θ = 0.

πi j ≡
∑

s
∑

o
∑

m π
so
mij is an untargeted moment that we can use to evaluate our model.32 We

find that the correlation between model and data flows is 0.928.

5 Implications of an Increase in Telecommuting

In this section, we study the long-run impact of the rise in work from home. We explore

the shifts in residence, jobs, prices, and commuting patterns predicted by our model, as

well as welfare implications of these changes.

5.1 Counterfactual Setup

Our baseline assumption is that the increase in remote work is driven by a combination of

an increase inwork from home productivity νs
m and a fall in the aversion to telecommuting

ςs
m. How do we determine the size of the changes in these parameters? The calibrated

changes in work from home productivity were described in Section 4.2.1. We also rely on

the SWAA survey data to obtain information about employers’ plans for the number of

days per week a worker is expected to work remotely in the long run. From these data

we calculate a counterfactual mean on-site working frequency for each worker type, and

lower the aversion to remote work to match it.33

32Flows by industry, occupation, education are unobserved and cannot be compared to model flows.

33As discussed in Section 3.6, the equilibrium of the model need not be unique. We follow Tsivanidis

(2019) in focusing on the counterfactual equilibrium that is computed using the benchmark equilibrium as
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Table 4: Work from home productivity and aversion parameters

Parameter Description Benchmark Counterfactual % change Target

Productivity of remote work:

νL
S non-college, non-tradable 0.9929 1.0718 7.95%

νL
G non-college, tradable 0.9961 1.0945 9.88%

νH
S college, non-tradable 0.9896 1.0807 9.21%

νH
G college, tradable 0.9990 1.0978 9.88%

Aversion to work from home:

ςL
S non-college, non-tradable 3.3599 1.7471 -68.3% θ̄L

S = 0.779
ςL

G non-college, tradable 2.7522 1.5167 -70.5% θ̄L
G = 0.699

ςH
S college, non-tradable 2.8196 1.5167 -46.5% θ̄H

S = 0.697
ςH

G college, tradable 2.3985 1.5245 -62.4% θ̄H
G = 0.512

Note: The table shows calibrated values of the work from home productivity and aversion parameters in

the benchmark and the counterfactual economies. Since ςs
m = 1 corresponds to the absence of work from

home aversion, we calculate the percentage change in ςs
m − 1 for each type of worker. The last column lists

targeted counterfactual work from home frequencies for each type of worker.

Figure 5: Commuting frequency, survey prediction vs. counterfactual model
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Note: “Data” reflects predicted post-pandemic distribution of days per week worked on site from the survey

by Barrero, Bloom, and Davis (2021). A bar at a given θ includes values θ ± 0.1. Values of θ > 0.9 are

included with θ = 1, and values of θ < 0.1 with θ = 0.

Table 4 shows the values of work from home productivity and aversion parameters.

All types of workers experience similar increases in productivity, between 8% and 10%.

Non-college workers in both sectors see somewhat larger drops in their work from home

aversion than college workers, and all but non-college workers in the non-tradable sector

the starting point and turns out to be unique. Such counterfactual equilibria may be more likely to occur,

for instance, due to path dependence (Allen and Donaldson, 2020).
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end up with similar levels of aversion. One possible interpretation of this result is that

even before the pandemic the technological and cultural barriers to telework were lower

for college graduates, and they still remain high for non-college workers in the non-

tradable sector. In Appendix Section H.2, we study a scenario in which all types of

workers experience the same change in work-from-home aversion. This does not change

the results in any major way.

Figure 5 compares the distributions of commuting frequency indicated by the Barrero,

Bloom, and Davis (2021) survey with those predicted in the counterfactual. In spite of

the fact that only one moment–the mean–from each distribution is targeted, the two sets

of distributions line up very well. Compared to the pre-pandemic distribution shown in

Figure 4, we see a sizable increase in hybrid and full-time remote work even though most

workers still commute to the office every day.

In our baseline counterfactual, we assume that remote workers do not contribute to

productive externalities, i.e., we set ψ = 0. We study the implications of this assumption

in Section 5.7.

5.2 Residents, Jobs and Real Estate Prices

Distribution of residents. As panels A and B in Figure 6 show, residents move away from

the densest locations and biggest cities, towards sparser locations and smaller cities.34

While there is much heterogeneity in the changes not explained by the crude ranking of

locations and cities, the average trend is monotonic.35

While panel D of Figure 6 shows that telecommutable residents take advantage of

increased remote work opportunities to move away from density, panel C shows that this

is partially counteracted by a smaller movement of non-telecommutable residents back

towards dense areas. This is because workers who cannot work remotely take advantage

of falling prices in city centers and larger cities to relocate closer to better-paying jobs.

Distribution of jobs. In contrast to the reallocation of residents, jobmovements are not

entirely monotonic in residential density. As panel A in Figure 7 shows, jobs increase on

average in locations below the median density and decrease in locations which are above

the median, while showing no average change in the most-dense locations. A similar

pattern is observed at the CZ level, as shown in panel B.36

Panel C shows that non-tradable jobsmonotonically follow the source of their demand,

34Althoff, Eckert, Ganapati, andWalsh (2022) and Haslag andWeagley (2024) documented a reallocation

of residents from the densest to the least dense locations during the pandemic.

35Appendix Figure J.1 displays predicted changes on a map.

36Appendix Figure J.2 maps predicted changes.
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Figure 6: Change in Residents

Panel A: All residents, model locations Panel B: All residents, CZs
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Panel C: Non-telecommutable Panel D: Telecommutable
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Benchmark log residential density, rank

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

C
ou

nt
er

fa
ct

ua
l c

ha
ng

e

Log residential density, non-telecommutable

01000200030004000

Benchmark log residential density, rank

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

C
ou

nt
er

fa
ct

ua
l c

ha
ng

e

Log residential density, telecommutable

Note: Panel A shows the relationship between residential density rank for model locations and change in log

residential density. Panel B shows the relationship between total resident rank for CZs and change in log

total residents. Panels C and D repeats the exercise for non-telecommutable and telecommutable residents

by model location. Scatterplots in gray show individual model locations or CZs, while diamonds or circles

represent averages by ventile: i.e. below the 5
th
percentile, from the 5

th
to the 10

th
, etc.

residents, to less dense locations.37 This means that the mixed pattern shown in panel A

must be due to shifts in tradable sector jobs, shown in panel D. Thanks to the weakening

of spatial frictions in the labor market, two types of locations win out and add workers

to their tradable industries. One type consists of low-density places with low real estate

costs. The other consists of the highest-density places with the highest productivity, such

as Manhattan, and also the biggest reduction in real estate costs.38 As a result, the densest

5% of locations see tradable employment go up by an average of over 5%.

Real estate prices. As a result of reallocation of many residents and some jobs to less

dense locations, changes in floorspace prices show a clear negative slope in initial density,

as can be seen in Figure 8. Prices decrease in most top-quartile locations and increase in

37Althoff, Eckert, Ganapati, and Walsh (2022) provide empirical evidence for this mechanism during the

pandemic.

38The correlation between log productivity in the tradable sector and log residents per square km is 0.63.
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Figure 7: Change in Employment

Panel A: All jobs, model locations Panel B: All jobs, CZs
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Panel C: Non-tradable Panel D: Tradable

01000200030004000

Benchmark log residential density, rank
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Note: Panel A shows the relationship between residential density rank for model locations and the change

in log job density. Panel B shows the relationship between total resident rank for CZs and the the change

in log total jobs. Panels C and D repeat the exercise for non-tradable and tradable jobs by model location.

Scatterplots in gray show individual model locations or CZs, while diamonds or circles represent averages

by ventile: i.e. below the 5
th
percentile, from the 5

th
to the 10

th
, etc.

most locations below the top quartile. Both the location-level and CZ-level patterns are

consistent with the shift of residents and non-tradable jobs to less dense locations driving

up floorspace demand.39 Appendix Figure J.3 displays predicted price changes on a map.

Changes within cities. In Appendix Figure J.4 we plot the counterfactual change in

residents, jobs, and floorspace prices as a function of the distance to the city center for 10

largest CZs. We show that, on average, locations closer to the center lose more residents

and see larger reductions in floorspace prices, but at the same time add jobs.

New York case study. In Appendix Section D, we describe shifts in residents, jobs,

and floorspace prices in New York to demonstrate an example of patterns that take place

within a large urban agglomeration.

39Rappaport (2022) investigates the effect of remote work on housing supply.
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Figure 8: Floorspace prices

Panel A: model locations Panel B: CZs
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Note: Panel A shows the relationship between residential density rank for model locations and the change

in floorspace prices. Panel B shows the relationship between total resident rank for CZs and the change in

floorspace prices. Scatterplots in gray show individual model locations or CZs, while diamonds or circles

represent averages by ventile: i.e. below the 5
th
percentile, from the 5

th
to the 10

th
, etc.

5.3 Why do workers move?

In Figure 6 we see telecommutable workers decentralize while non-telecommutable work-

ers centralize. But what accounts for the considerable heterogeneity we observe around

this trend? And, more importantly, what motivates these moves?

Four possible motives, corresponding to the four components of workers’ utility, are

(a) lower house prices, (b) lower non-tradable prices, (c) better amenities, and (d) better

job access, as measured by the commuter market access (CMA) defined in equation (3.6).

Table 5 reports the best-fit line slopes frombivariate regressions of log changes in residents

between the benchmark and the counterfactual on logs of each of these variables, in either

the benchmark or counterfactual economy. All among this first set of coefficients go in the

same direction as the overall correlation between each variable and density. To gain more

insight into sources of heterogeneity and workers’ motives, we condition on density by

running each regression separately for eachdensity ventile, plotting the best-fit coefficients

in Figure 9.

As we saw in Figure 6, non-telecommutableworkers move towards denser locations, and

thus, as in Table 5, towards higher prices, higher amenities, and higher CMA. Conditional

on density, all of those correlations reverse, except for CMA. In Figure 9, we see that within

each density ventile, non-telecommutable workers move towards lower-priced locations

with lower amenties, but towards locations with higher market access. This strongly

suggests that the overall trend towards denser locations is motivated by better job market

access. There is also a substitution effect at play here: the departure of telecommutable

workers from central locations lowers the cost choosing high-CMA locations with shorter

33



Table 5: Importance of location characteristics for reallocation of workers

Panel A: Model locations

House prices Non-trad. prices Amenities CMA

Coeff. R2
Coeff. R2

Coeff. R2
Coeff. R2

Benchmark values

Non-telecommutable 0.04*** 0.07 0.27*** 0.10 0.02*** 0.02 0.03*** 0.29

Telecommutable -0.28*** 0.34 -1.34*** 0.19 -0.26*** 0.21 -0.12*** 0.46

Counterfactual values

Non-telecommutable 0.03*** 0.04 0.03*** 0.00 0.02*** 0.02 0.03*** 0.19

Telecommutable -0.26*** 0.24 -0.71*** 0.06 -0.24*** 0.17 -0.11*** 0.27

Note: This table shows the values of coefficients and R2
from bivariate regressions of log resident changes on

log house prices, non-tradable prices, amenities, and CMA in the benchmark and counterfactual economies.

*, **, and *** indicate 10%, 5%, and 1% significance levels.

Figure 9: Importance of location characteristics for reallocation of workers, by density

Panel A: Non-telecommutable

House prices Non-trad. prices Amenities CMA
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Panel B: Telecommutable

House prices Non-trad. prices Amenities CMA
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Note: This figure shows the values of coefficients (on y-axis) from bivariate regressions of log resident

changes on log house prices, non-tradable prices, amenities, and CMA in the benchmark (black line with

diamonds) and counterfactual (gray line with circles) economies, separately for each ventile of population

density (on x-axis) in the benchmark economy.

commute times andhigherwages. This induces non-telecommutableworkers to substitute

towards consumption and short commutes, and away from amenities.

We can analyze the movements of telecommutable workers in a similar way. But first,

let us note that unlike the substitution effect impacting non-telecommutable workers,

remote-capable workers are hit with an income effect–the cost of location choice has gone

down, effectively expanding their budget set along all the dimensions of utility (housing,
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goods, amenities, commute times). Figure 6, shows them moving to less dense locations,

producing the expected negative correlations for prices, amenities, and CMA in Table 5.

Conditioning on density, we see that telecommutable workers use their improved ability

to choose locations differently depending on density. Among the highest- and lowest-

density locations, they seek out high amenities, and are willing to pay higher prices for

houses and non-tradables to get them. Among medium-density locations, they seek out

low house prices and, to a lesser extent, low non-tradable prices, and show indifference

to the distribution of amenities. There is a significant gap between the benchmark and

counterfactual lines for house and non-tradable prices, because telecommuters drive them

up in the places they move to. Telecommutable workers move away from market access

because they no longer need it as much, especially in lower-density locations.

The difference in the location choices of telecommutable and non-telecommutable

workers resembles the recent tendency of college graduates to increasingly concentrate in

high-amenity and high-cost areas (Diamond and Gaubert, 2022). In this case, however,

what distinguishes the two groups is not the presence of a college degree but the ability

to engage in production from one’s home, and thus the freedom to choose where to live

based on one’s preferences, and less based on where good jobs are.

5.4 Why do jobs move?

We now conduct an exercise similar to the one in Section 5.3, but for jobs. We particularly

hope to shine light on the motives of tradable firms, who in Figure 7 appear to have a

mixed pattern of relocations.40 The four mainmotivating factors for job movements in our

model are (a) floorspace rents, (b) workers’ wages, (c) productivity, and (d) firm market

access (FMA), as defined in equation (3.6). The results are shown in Table 6 and Figure 10.

Non-tradable firms’ moves are substantially correlated with lower floorspace rents and,

to a lesser extent, with lower FMA because they follow the mass of workers as they

decentralize. Little is explained by a correlation with workers’ wages or productivity, as

these firms’ location choices are of necessity driven muchmore by shifting demand rather

than costs.

Tradable firms also generally move towards lower rents. There is non-monotonicity–in

both the densest and least dense places, jobs do not move differentially toward lower-rent

locations, while in low-to-medium density places they do, strongly. There appears to be

a price-productivity trade-off–in the most- and least-dense ventiles, firms seek out the

highest productivity locations in the neighborhood, while in medium-density ventiles

40See also Appendix Section I, where we examine how the increase in remote work intensifies sectoral

specialization of cities.
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Table 6: Importance of location characteristics for reallocation of jobs

Panel A: Model locations

Flsp. rents Wages Productivity FMA

Coeff. R2
Coeff. R2

Coeff. R2
Coeff. R2

Benchmark values

Non-tradable -0.12*** 0.35 -0.01*** 0.00 -0.01 0.00 -0.01*** 0.11

Tradable -0.11*** 0.12 0.07*** 0.03 -0.29*** 0.05 -0.00*** 0.00

Counterfactual values

Non-tradable -0.11*** 0.25 -0.01*** 0.00 -0.01 0.00 -0.01*** 0.06

Tradable -0.13*** 0.12 0.05*** 0.02 -0.29*** 0.05 -0.00 0.00

Note: This table shows the values of coefficients and R2
from bivariate regressions of log job changes on log

floorspace rents, wages, productivity, and FMA in the benchmark and counterfactual economies. *, **, and

*** indicate 10%, 5%, and 1% significance levels.

Figure 10: Importance of location characteristics for reallocation of jobs, by density

Panel A: Non-tradable

Floorspace rents Wages Productivity FMA
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Panel B: Tradable
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Note: This figure shows the values of coefficients (on y-axis) from bivariate regressions of log job changes

on log floorspace rents, wages, productivity, and FMA in the benchmark (black line with diamonds) and

counterfactual (gray linewith circles) economies, separately for each ventile of population density (on x-axis)

in the benchmark economy.

their pursuit of low rents leads them to less productive locations on average. Both of

these motives lead them to places that have somewhat higher wages, though the lower

magnitudes of the best-fit coefficients suggest that the higher labor cost is more than offset

by lower floorspace cost or higher productivity. FMA appears to have little explanatory

power.
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5.5 Model Validation: Residents and Rents, 2019–2023

Since 2020 there were large changes in the distribution of residents and housing in the

United States. These are at best medium-run, and not long-run, changes. They are also

influenced by a host of factors, from politics to fear of Covid to monetary and fiscal policy,

which we do not model. Nevertheless, if the increase in remote work was one of the

important motivations, our model predictions should be correlated with these observed

changes. So, are they?

Residents. We find that our model’s counterfactual residential relocations are posi-

tively correlated with observed migration between 2019 and 2023. We use aggregated

ACS data at the PUMA level to measure changes in population counts between 2019 and

2023. We then regress observed migration on model-predicted migration, and report the

results in Table 7, panel A.

Column (1) corresponds to a specification with no controls, and shows a positive,

statistically significant relationship between model predictions and observed changes.41

Moreover, this is not merely due to the negative relationship between initial residential

density and change in population. As Column (2) shows, even after controlling for density

in 2012–2016 model predictions retain positive, significant correlation with the data.

Then we introduce fixed effects for commuting zones (CZ) to evaluate the match

between our predictions and observed shifts within cities. Column (3) shows that are

model predictions are positively correlated with observed changes, albeit weakly so.

Results in column (4) emphasize the role of density for migration patterns and show that

out model’s predictions on migration within cities are not correlated with the data, once

density is controlled for. In Columns (5) and (6), we aggregate to the level of CZs, and see

that our model is a good predictor of shifts across CZs, as well.

Rent prices. Ourmodel’s counterfactual changes in floorspace prices are also positively

correlatedwith observed changes in housing costs betweenDecember 2019 andDecember

2023, althoughmostlywithinCZs. WeuseZillowdata to construct ameasure of residential

rent price changes and regress this onourmodel’s predictions.42 Weuse the same sequence

41Haslag and Weagley (2024) study interstate migration since 2020 and find that 12% of moves were

influenced by the pandemic and that among pandemic-influenced movers, 15% were influenced by remote

work. Ozimek (2020) estimates that 2.4% of adults in the U.S. have moved residences because of remote

work since 2020. The fact that many moves since 2020 are not motivated by the ability to work from home

may explain why the predictions of our model are positively correlated with the data but the R2
’s are low.

42Here we use Zillow’s Observed Rent Index (ZORI) as our measure of housing costs because of the close

connection between rents and current housing demand, which also exists in our model. Conducting the

same exercise for Zillow’sHouseValue Index (ZHVI),we similarly find apositive and significant relationship

with ourmodel predictions for changes 2019–2021, but no relationship for the changes over the entire period

from 2019 to 2023. We believe this is due to a lack of alignment between real estate investors’ expectations

and current market conditions, which is beyond the scope of the current study.
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Table 7: Changes from 2019 to 2023, model vs. data

Panel A: Residents

(1) (2) (3) (4) (5) (6)

Log chg residents, model 0.160
∗∗∗

0.186
∗∗∗

0.0874
∗

-0.0151 0.246
∗∗∗

0.320
∗∗∗

(0.0257) (0.0348) (0.0390) (0.0520) (0.0596) (0.0724)

Level of obs. ML ML ML ML CZ CZ

Density control no yes no yes no yes

CZ fixed effects no no yes yes – –

Observations 4502 4502 4453 4453 723 723

R-squared 0.00850 0.00878 0.384 0.385 0.0230 0.0273

Panel B: House rents

(1) (2) (3) (4) (5) (6)

Log chg prices, model 0.546
∗∗∗

0.131 0.774
∗∗∗

0.729
∗∗∗

-2.984
∗

-3.097

(0.110) (0.126) (0.111) (0.146) (1.279) (1.573)

Level of obs. ML ML ML ML CZ CZ

Density control no yes no yes no yes

CZ fixed effects no no yes yes – –

Observations 1334 1334 1293 1293 172 172

R-squared 0.0182 0.0475 0.492 0.492 0.0310 0.0311

Note: In panel A, the dependent variable is the log change in residents between 2019 and 2023 constructed

from the ACS. In panel B, the dependent variable is the log change in house rents between December 2019

and December 2023 constructed from Zillow. Standard errors are in parentheses. The regressions are

estimated at the level of model locations (“ML”), with or without CZ fixed effects, or at the level of CZs

(“CZ”). Regressions at the model location level with CZ fixed effects have fewer observations because some

CZs correspond to model locations. *, **, and *** indicate 10%, 5%, and 1% significance levels.

of specifications as we did for migration, and report the results in Table 7, panel B.

Column (1) shows a positive, significant relationship between model predictions and

with rent price changes across model locations, although as column (2) shows the pre-

dictive power of our model largely relies on the relationship between initial density and

rents.43 As shown in columns (3) and (4), the model’s within-city predictions line up

well with the data, even when controlling for initial density. Columns (5) and (6) show,

however, that the changes our model predicts across CZs are poorly correlated with what

happened 2019–2023. This could be due to forces outside themodel, such as differences in

pandemic policies at the state or local levels, which may have had an important influence

on real estate demand across cities during those years. Figure 14 below confirms that,

43The relationship between initial density and price or rent growth during the pandemic has been

previously documented. Gupta, Mittal, Peeters, and Van Nieuwerburgh (2022) and Liu and Su (2021) find a

“flattening” of the relationship between prices and distance to the center inmajor metro areas for residential

real estate; Rosenthal, Strange, and Urrego (2021) report a similar relationship for commercial real estate.
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while our model predicts a convergence of CZ-level prices in the counterfactual economy,

in the data CZs with higher prices in 2019 did not experience lower price growth.

5.6 Commuting and Welfare

Table 8 summarizes aggregate results for the main counterfactual scenario, broken down

by worker type. In what follows, we will discuss each row in turn.

Commuting. The average worker lives 47% farther in commuting time from their

workplace.44 Yet they still spend 25% less time commuting, because the average frequency

of remote has increased by 1.1 days per week. Moreover, those who cannot work from

home reduce their commutes by moving slightly closer to their workplaces. Commutes

across metro areas become more common. In the benchmark economy, 22.5% of workers

live and work in different CZs. In the counterfactual economy, this number goes up to

31.7% as remote work increases the average distance between residence and workplace.

Income and inequality. Workers’ income falls marginally, by 0.4%, averaging sizable

gains by those who can work from home and losses by those who cannot. A major reason

for this disparity is that, in our calibration, formostworkers telework ismore productive in

the counterfactual economy; therefore, more frequent remote work boosts their incomes.45

Among non-telecommutable workers, those without a college degree experience a

6.3% fall in income, while college graduates see a 7.7% drop in income. The fall is larger

for college workers because there are more remote-capable workers among the college-

educated and, by supplying a greater amount of labor effort due to working from home

more often, they complement the labor effort of non-college workers but compete with

college workers who cannot telecommute. Averaged together, the incomes of the college-

educated increase while the incomes of their non-college counterparts fall, which means

that the overall college wage gap widens.

Prices. The average price of floorspace drops by 1.8%, due to the net movement of

residents and jobs to peripheral locations with lower building costs and higher housing

supply elasticities. Telecommutable workers pay between 2.5 and 3.1% less for housing,

as they relocate to more affordable areas. Non-telecommutable workers move to denser

locations, and see much smaller reductions in their housing costs.

Non-tradable prices increase by around 2.3%. This can be attributed to a combination

of the increase in income, and a movement of demand to less-dense places which tend to

44Using matched employer-employee data for the U.S., Akan, Barrero, Bloom, Bowen, Buckman, Davis,

Pardue, and Wilke (2024) show that the average distance between employers and employees rose from 10

miles in 2019 to 27 miles in 2023.

45This result is consistent with Pabilonia and Vernon (2023) who, using ACS data, find that between 2019

and 2021 real wages grew by 4.4% faster for remote workers than for office-based workers.
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Table 8: Aggregate results

non-college college

all

workers

all non-

tel.

tel. all non-

tel.

tel.

Average time to work, % chg 46.8 48.2 -0.4 102.6 43.8 -0.6 55.6

Time spent commuting, % chg -25.4 -23.4 -0.4 -60.0 -30.5 -0.6 -43.6

Average WFH days/week, chg 1.1 1.1 – 2.6 1.3 – 2.6

Income, % chg -0.4 -0.7 -6.3 6.9 0.2 -7.7 2.8

Floorspace prices, % chg -1.8 -1.7 -0.7 -3.1 -2.2 -1.3 -2.5

Non-tradables prices, % chg 2.3 2.3 2.4 2.1 2.3 2.4 2.2

Welfare, % chg

consumption only -1.6 -2.0 -7.8 5.9 -1.0 -9.1 1.6

+ commuting 0.2 -0.6 -7.6 9.2 1.7 -8.8 5.2

+ amenities 0.3 -0.4 -6.1 7.4 1.5 -6.2 4.1

total welfare 12.7 10.5 -6.9 41.5 19.6 -8.0 22.5

Note: The table shows results of the main counterfactual exercise, as described in the text. “tel.” refers to

telecommutable workers, and “non-tel.” to non-telecommutable workers. Price changes refer to the change

in the average price faced by a member of the indicated group of workers.

also have lower workplace amenities for the non-tradable sector.46

Workers’welfare and landowners’ income. In Table 8, we breakdownwelfare gains by

incrementally considering the effects of consumption, commuting, and amenities.47 Com-

bined consumption of housing, tradable, and non-tradables goods goes up for telecom-

muters and down for non-telecommuters, declining by 1.6% on average. This is the net

result of a 0.4% decrease in income and a 3.5% increase in the price of non-tradables,

partly offset by the 1.8% fall in floorspace prices. The reduction in time commuting yields

small gains for non-telecommutable workers and large gains for the remote-capable.48 In

the next row, we see that non-telecommutable workers enjoy better amenities on average,

due to their moving to more central locations, while the peripheral destinations of the

telecommutable workers mean they enjoy somewhat poorer amenities than before.

Overall welfare–expected utility prior to the realization of preference shocks–increases

by an average of 12.7%. This is the net result of large gains for telecommutableworkers and

smaller losses for the rest.49 An important contributor to telecommuters’ gains is that less

46These are locations where, all else equal, it is harder to attract workers due to lower calibrated employ-

ment amenities. Hence, non-tradable firms must pay higher wages and pass on that cost to the consumer.

47Welfare decomposition is described in Appendix Section E.

48Since our model does not allow for endogenous reduction in traffic due to less frequent commuting,

these welfare gains may be understated.

49Because we do not take a position on whether the calibrated “aversion to telecommuting” parameters,

ςs
m, reflect genuine worker preferences or other kinds of non-pecuniary barriers to remote work, we exclude

the shift in these parameters from all welfare change calculations.
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frequent commutes leave them free to choose a particular residence location and job site

that suit their idiosyncratic preferences, represented by high values of the Fréchet shocks.

Overall, college workers gain more than non-college: even though telecommutable non-

college workers gain the most, their numbers are small; while telecommutable workers

make up a large proportion of the college-educated.

We do not take a stance on the weight of landlords in the social welfare function, and

so have omitted them from the preceding calculations and discussion. Overall demand

for floorspace falls by a mere 0.1%. This demand is allocated to places with higher supply

elasticity (and, therefore, lower land share), and thus floorspace prices decline by 1.8%.

Due to the combination of fixed land and roughly unchanged floorspace demand, average

land prices, and thus landlord income, experience a smaller decline of about 0.8%.

5.7 TheRoleofRealEstateSupply,Amenities, andKnowledgeSpillovers

To assess the roles of variousmechanisms, we run five alternative counterfactuals inwhich

some variables do not adjust. Appendix Section F contains the details.

In one of these scenarios workers are permitted to change jobs and residences, but the

supply of real estate, as well as the levels of productivity and amenities are held fixed.

This leads to a 16% jump in residential prices and a 15% fall in commercial prices. This

mimics the bifurcated shift in real estate values observed during the pandemic years,

and highlights the importance of both new construction and conversion of commercial to

residential for our baseline long-run prediction of a slight decrease in average prices.

In another counterfactual, we let the supply of real estate adjust but do not allow

local amenities or productivity to change. Migration of residents and jobs is more muted

than in themain counterfactual where endogenous changes in amenities and productivity

amplify the movement of residents and jobs to less dense places.

In yet another scenario, we allow all margins to adjust, and also let remote work

contribute to productive externalities as much as on-site (ψ = 1). This reverses the loss

in productivity from remote workers’ lack of contribution to knowledge spillovers and

improves welfare for non-telecommutable workers.

5.8 Covid-19: Technology or Preference Shock?

Aswe discussed in Section 2.2, the shift towards remotework seen since 2020 ismost likely

due both to improvements in remote productivity (technology) as well as shifts in norms,

policies and preferences. This is the approach we take in our counterfactual where the

rise in work from home occurs due to changes in both productivity and preferences. As a
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robustness check and also as away to evaluate the relative importance of each explanation,

we also conduct exercises in which the increase in remote work is driven purely by either

technology or preferences.

In the productivity-based scenario, we calibrate the baseline as described above. Then,

we keep preference parameters at their baseline levels and target the change in remote

work frequencyby adjusting the relative productivity parameters. This requires a 56–106%

jump in remote work productivity, depending on the worker type, and yields implausibly

large wage gains for remote-capable workers that range from 47% to 88%.50 This scenario

is described in greater detail in Appendix Section G.

In the preference-based scenario, we keep remote productivity at their baseline level

and generate the entire increase in work from home by lowering the aversion to telecom-

muting. Since in our main counterfactual, productivity only grows by 8–10%, the results

of this counterfactual are quite similar to our main results. An important difference is that

in this scenario, average welfare gains are slightly larger and the gaps in gains between

different worker types are smaller. This is because non-telecommutable workers with the

same education working in the same industry are better positioned to compete with their

telecommutable counterparts whose remote productivity does not change. This scenario

is described in more detail in Appendix Section H.4.

6 The Great Re-Convergence

The “Great Divergence” is a much-remarked-upon trend in the decades following the

1980s.51 It is characterized by widening gaps in economic outcomes between U.S. cities,

driven in part by ever greater concentration of the highly-paid and the highly-educated

in select large “superstar” cities, especially in their downtown areas. One upshot of the

rise of remote work could be a “re-convergence,” as newly-freed laptop workers disperse

to greener pastures and increase their geographic proximity to “main street America.”

In this section, we will explore our model’s predictions for a re-convergence within and

across cities, comparing to data on changes 2019-2023.

50Using ACS data, Pabilonia and Vernon (2023) find that between 2019 and 2021 real wages grew by only

4.4% faster for remote workers than office-based workers.

51The “Great Divergence” across locations in the U.S. was first summarized inMoretti (2012). The period

from 1980s follows decades of regional convergence, as documented in Blanchard and Katz (1992).
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Figure 11: Reversal of the skill sorting across CZs

Panel A: Model Panel B: Data
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Note: Panel A plots the share of college graduates in a CZ in the benchmark economy and the change in the

college share in the counterfactual economy. Panel B shows the same relationship for the 2019 one-year ACS

sample and the change in the 2023 one-year ACS sample. Circle size is proportional to the CZ population

in the benchmark economy. The legend shows slope coefficients and their standard errors.

Figure 12: Reversal of the urban revival
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Note: The figure shows the percentage-point change in the college share in a 10 km ring around centers of

ten largest CZs in the counterfactual economy (black bars) and in the data between 2019 and 2023 (gray

bars). Data changes are adjusted to account for the nationwide increase in the college share. Center of a CZ

is defined as the location of the city hall of the largest municipality.

6.1 Skill Sorting

Panel A of Figure 11 shows our model’s predictions for the sorting of college-educated

workers across CZs. Education becomes less spatially concentrated, pointing towards a

partial reversal of the trends documented by Berry and Glaeser (2005), Moretti (2012),

and Diamond (2016), inter alia. In panel B we provide evidence that this reversal may

have already started. We estimate college shares at the commuting zone (CZ) level from

one-year ACS samples in 2019 and 2023 and find that CZs with higher college shares in

2019 saw a slower growth in college shares 2019–2023.52

52The results in panel B have somewhat different magnitudes than model predictions for at least two

reasons. First, it uses 1% ACS samples and our model uses a 5% sample. Second, panel B compares 2019
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Figure 13: Changes in wage inequality across CZs

Panel A: Workplace (model) Panel B: Residence (model) Panel C: Residence (data)
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Note: Panel A shows the relationship between demeaned log average wages paid to workers who work in a

given CZ in the benchmark economy and the log change in wages in the counterfactual. Panel B shows the

same relationship for workers who live in a given CZ. Panel C shows the relationship for wages earned by

residents of anCZ in the 2019ACS sample and the change in the 2023ACS sample. Circle size is proportional

to CZ population in the benchmark. The legend shows best-fit slope coefficients and their standard errors.

Ourmodel also predicts that skillwill become less concentrated in city centers. Couture

andHandbury (2020) documented growing concentration of college graduates around the

centers ofU.S. cities since 2000 and linked this “urban revival” to increased consumption of

non-tradable services. As discussed in the previous section, ourmodel suggests that some

of these services may follow remote workers, who are predominantly college-educated,

out of the urban centers. Combinedwith less frequent commuting, this makes city centers

less attractive for college graduates and, as shown in Figure 12, ourmodel predicts a fall in

college shares in the centers of nine out of ten largest CZs.53 According to the comparison

of 2019 and 2023 ACS data at the PUMA level, college graduates already started leaving

the centers ofmost largest cities, and themagnitudes aremuch larger thanwhat ourmodel

predicts.

6.2 Income Inequality

Our model predicts that differences across CZs in the average wage paid to individuals

who work there will not change much, as shown in Panel A of Figure 13. Cities that

were more productive before the pandemic will continue offering high incomes to their

workers.54 However, as telecommuting improves access to jobs in high-paying locations,

the disparities across CZs in the wage of the average resident will fall, as shown in Panel

with 2023, while our model is calibrated to 2012–2016.

53City center is defined as the 10km ring around the location of the city hall of the largest municipality.

54Liu and Su (2023) document a reduction in the city-size wage premium during the pandemic using

job-posting data, driven by occupations with high rates of work-from-home adoption.
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Figure 14: Reversal of the house price divergence

Panel A: Across CZs (model) Panel B: Across CZs (data)
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Note: Panel A shows the relationship between demeaned log average house prices at the CZ level in the

benchmark economy and the log change in prices in the counterfactual. Panel B shows the same relationship

using prices from Zillow in December 2019 and the change between December 2019 and December 2023.

Panel C shows the relationship between the population-weighted standard deviation of log house prices

across model locations within an CZ in the benchmark and the change in the standard deviation in the

counterfactual. Panel D shows the same relationship using prices from Zillow in December 2019 and

December 2023. Circle size is proportional to CZ population in the benchmark. The legend shows best-fit

slope coefficients and their standard errors.

B. This would represent a turning back of the increasing geographic income inequality

documented by Moretti (2013), Giannone (2022), and Gaubert, Kline, Vergara, and Yagan

(2021). Panel C shows that this reversal has already started. Using ACS data, we find

a negative correlation between average wages earned by CZ residents in 2019 and wage

growth 2019–2023.

6.3 House Price Dispersion

Previous research has documented increased dispersion of house prices both across cities

(Van Nieuwerburgh and Weill, 2010) and within cities (Albouy and Zabek, 2016) in the
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decades leading up to 2020. In our model the decline in skill concentration and income

inequality lead to more balanced distribution of housing demand across space, and thus

presage a reduction in real estate price dispersion both across andwithin cities. Panel A of

Figure 14 shows that CZs with high average prices in the benchmark model see a decline

in prices, while more affordable CZs experience price increases. Panel C shows that the

dispersion of prices across locations within CZs also falls.

In contrast to our model predictions, house price dispersion has not fallen across CZs,

as shown in panel B of Figure 14. This may be due to the fact that hybrid work accounted

for most of the increase in work from home and that a large part of associated migration

has been within, not across, cities. Consistent with this hypothesis, we document a large

reduction of within-city price variance, as shown in panel D.55 These trends suggest that

telecommuting could change the geography of housing affordability, especially so within

cities. On the one hand, it may make previously expensive locations more affordable but,

on the other hand, it may increase prices in places where housing is relatively cheap.

7 Conclusion

The quantitative exercises we have just reviewed indicate that the new remoteness of

work does not threaten an “end to big cities” or any other kind of catastrophic upheaval.

It will, however, present challenges and opportunities to certain actors in the economy.

World-beating firms in places like Manhattan will have the opportunity to draw talent

from a broader catchment area; at the same time, they face the challenge of maintaining

their edge with fewer of the face-to-face interactions which have, in the past, facilitated

innovation and excellence. Owners of commercial real estate in city centers will face the

challenge of finding new uses for office space, as it seems nearly certain that demand will

remain lower long-term.

The reduction in miles traveled commuting should reduce pollution and congestion,

though reallocation of residents to less energy-efficient suburban homes may offset the

environmental benefits. In addition, less frequent and more decentralized commuting

will present a serious challenge to public transit planners who may see large drops in

demand for previously popular routes.

The “re-convergence” of highly-educated workers towards the periphery may help

supply the tax base and social capital to improve public services and institutions in places

where these have lost their luster over the past several decades, though it may also erode

55These findings are consistent with the trends documented in Gupta, Mittal, Peeters, and Van Nieuwer-

burgh (2022) and Althoff, Eckert, Ganapati, and Walsh (2022), inter alia.
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the tax base of some urban cores. It should also, in the long run, ease housing affordability

concerns that have recently beset big cities. At the same time, our framework predicts

that the overall welfare gains will be very unequally distributed across occupation types,

and that there will be no fall in the overall income inequality which so many see as an

important social and political challenge.

Bibliography
ACS (2016): American Community Survey, U.S. Census Bureau. https://usa.ipums.
org/usa/. Accessed through IPUMS USA, September 2020.

Agrawal, D. R., and J. K. Brueckner (2022): “Taxes and Telework: The Impacts of State

Income Taxes in a Work-from-Home Economy,” Working Paper.

Ahlfeldt, G. M., and E. Pietrostefani (2019): “The economic effects of density: A synthe-

sis,” Journal of Urban Economics, 111, 93–107.
Ahlfeldt, G. M., S. J. Redding, D. M. Sturm, and N. Wolf (2015): “The Economics of

Density: Evidence From the Berlin Wall,” Econometrica, 83(6), 2127–2189.
Akan, M., J. M. Barrero, N. Bloom, T. Bowen, S. Buckman, S. J. Davis, L. Pardue, and

L. Wilke (2024): “Americans Now Live Farther from Their Employers,” Working Paper.

Albouy, D., and G. Ehrlich (2018): “Housing productivity and the social cost of land-use

restrictions,” Journal of Urban Economics, 107, 101 – 120.
Albouy, D., and M. Zabek (2016): “Housing Inequality,” Working Paper 21916, National

Bureau of Economic Research.

Allen, T., C. Arkolakis, and X. Li (2020): “On the EquilibriumProperties ofNetworkMod-

els with Heterogeneous Agents,” Working Paper 27837, National Bureau of Economic

Research.

Allen, T., and D. Donaldson (2020): “Persistence and Path Dependence in the Spatial

Economy,” Working Paper 28059, National Bureau of Economic Research.

Althoff, L., F. Eckert, S. Ganapati, and C. Walsh (2022): “The Geography of Remote

Work,” Regional Science and Urban Economics, 93, 103770.
Barrero, J. M., N. Bloom, and S. J. Davis (2021): “Why Working from Home Will Stick,”

Working Paper 28731, National Bureau of Economic Research.

Bartik, A. W., Z. B. Cullen, E. L. Glaeser, M. Luca, and C. T. Stanton (2020): “What

Jobs are Being Done at Home During the Covid-19 Crisis? Evidence from Firm-Level

Surveys,” NBER Working Paper 27422.

Baum-Snow, N., and L. Han (2021): “The Microgeography of Housing Supply,” Working

Paper.

Behrens, K., S. Kichko, and J.-F. Thisse (2021): “Working fromHome: TooMuch of a Good

Thing?,” Working Paper.

Berry, C. R., and E. L. Glaeser (2005): “The divergence of human capital levels across

cities*,” Papers in Regional Science, 84(3), 407–444.
Bick, A., and A. Blandin (2021): “Real Time Labor Market Estimates During the 2020

Coronavirus Outbreak,” Working paper.

47

https://usa.ipums.org/usa/
https://usa.ipums.org/usa/


Bick, A., A. Blandin, and K. Mertens (2021): “Work from Home Before and After the

COVID-19 Outbreak,” Working paper.

Bick, A., A. Blandin, K. Mertens, and H. Rubinton (2024): “Work fromHomeand Interstate

Migration,” Working Paper.

Blanchard, O., and L. Katz (1992): “Regional Evolutions,” Brookings Papers on Economic
Activity, 23(1), 1–76.

Bloom, N., R. Han, and J. Liang (2022): “How Hybrid Work from Home Works Out,”

Working paper.

Bloom, N., J. Liang, J. Roberts, and Z. J. Ying (2015): “Does working from home work?

Evidence from a Chinese experiment,” The Quarterly Journal of Economics, 130(1), 165–
218.

Brown, J. P., and C. Tousey (2023): “The Shifting Expectations for Work from Home,”

Kansas City Fed Economic Review, 108 (2).
Brueckner, J. K. (2024): “Work-from-Home and Cities: An Elementary Spatial Model,” .

Brueckner, J. K., M. E. Kahn, and G. C. Lin (2023): “A New Spatial Hedonic Equilibrium

in the Emerging Work-from-Home Economy?,” American Economic Journal: Applied Eco-
nomics, 15(2), 285–319.

Card, D. (2009): “Immigration and Inequality,” American Economic Review, 99(2), 1–21.
Choudhury, P., T. Khanna, C. Makridis, and K. Schirmann (2022): “Is hybrid work the

best of both worlds? Evidence from a field experiment,” Working Paper.

Couture, V., and J. Handbury (2020): “Urban revival in America,” Journal of Urban Eco-
nomics, 119(C), S0094119020300383.

CTPP (2016): Census Transportation Planning Products, American Association of

State Highway and Transportation Officials. https://ctpp.transportation.org/
ctpp-data-set-information/. Accessed September 2020.

Dalton, M., M. Dey, and M. Loewenstein (2022): “The impact of remote work on local

employment, business relocation, and local home costs,” Working Paper.

Davis, M. A., A. C. Ghent, and J. Gregory (2024): “The work-from-home technology boon

and its consequences,” Review of Economic Studies, p. rdad114.
Davis, M. A., and F. Ortalo-Magné (2011): “Household Expenditures, Wages, Rents,”

Review of Economic Dynamics, 14(2), 248 – 261.
De Fraja, G., J. Matheson, and J. Rockey (2021): “Zoomshock: The geography and local

labour market consequences of working from home,” Working paper.

Delventhal, M. J., E. Kwon, and A. Parkhomenko (2022): “JUE Insight: How do cities

change when we work from home?,” Journal of Urban Economics, 127, 103331, JUE

Insights: COVID-19 and Cities.

Diamond, R. (2016): “The Determinants andWelfare Implications of USWorkers’ Diverg-

ing Location Choices by Skill: 1980-2000,” American Economic Review, 106(3), 479–524.
Diamond, R., and C. Gaubert (2022): “Spatial Sorting and Inequality,” Annual Review of

Economics, 14(1), 795–819.
Dingel, J. I., and B. Neiman (2020): “How Many Jobs Can Be Done at Home?,” Journal of

Public Economics, 189, 104235.
Dingel, J. I., and F. Tintelnot (2020): “Spatial Economics for Granular Settings,” Working

48

https://ctpp.transportation.org/ctpp-data-set-information/
https://ctpp.transportation.org/ctpp-data-set-information/


Paper.

Duranton, G., and J. Handbury (2023): “Covid and Cities, Thus Far,” Working Paper

31158, National Bureau of Economic Research.

Ellen, I. G., and K. Hempstead (2002): “Telecommuting and the Demand for Urban Living:

A Preliminary Look at White-collar Workers,” Urban Studies, 39(4), 749–766.
Emanuel, N., E. Harrington, and A. Pallais (2022): “The Power of Proximity,” Working

Paper.

Gamber, W., J. Graham, and A. Yadav (2023): “Stuck at home: Housing demand during

the COVID-19 pandemic,” Journal of Housing Economics, 59, 101908, COVID-19’s Impacts

on Housing Markets.

Gaspar, J., and E. Glaeser (1998): “Information Technology and the Future of Cities,”

Journal of Urban Economics, 43(1), 136–156.
Gaubert, C., P. Kline, D. Vergara, and D. Yagan (2021): “Trends in U.S. Spatial Inequality:

Concentrating Affluence and a Democratization of Poverty,” NBER Working Paper

28385.

Giannone, E. (2022): “Skill-BiasedTechnicalChange andRegionalConvergence,”Working

Paper.

Gibbs, M., F. Mengel, and C. Siemroth (2022): “Work from Home and Productivity:

Evidence from Personnel and Analytics Data on IT Professionals,” Working Paper.

Glaeser, E., and G. Ponzetto (2007): “Did the Death of Distance Hurt Detroit and Help

New York?,” NBERWorking Papers 13710, National Bureau of Economic Research, Inc.

Graham, M. R., M. J. Kutzbach, and B. McKenzie (2014): “Design Comparison of LODES

and ACS Commuting Data Products,” Discussion Paper 14-38, U.S. Census Bureau.

Gupta, A., V. Mittal, J. Peeters, and S. Van Nieuwerburgh (2022): “Flattening the curve:

Pandemic-Induced revaluation of urban real estate,” Journal of Financial Economics,
146(2), 594–636.

Gupta, A., V. Mittal, and S. Van Nieuwerburgh (2022): “Work From Home and the Office

Real Estate Apocalypse,” Working Paper 30526, National Bureau of Economic Research.

Haslag, P., and D. Weagley (2024): “From LA to Boise: How migration has changed

during the COVID-19 pandemic,” Journal of Financial and Quantitative Analysis, 59(5),
2068–2098.

He, H., D. Neumark, and Q. Weng (2021): “Do workers value flexible jobs? A field

experiment,” Journal of Labor Economics, 39(3), 709–738.
Heblich, S., S. J. Redding, and D. M. Sturm (2020): “TheMaking of theModernMetropolis:

Evidence from London,” Quarterly Journal of Economics, 135(4), 2059–2133.
Howard, G., J. Liebersohn, and A. Ozimek (2022): “The Short- and Long- Run Effects of

Remote Work on U.S. Housing Markets,” Working Paper.

Kyriakopoulou, E., and P. M. Picard (2021): “The Zoom City: Working From Home and

Urban Land Structure,” Working paper.

Larson, W., and W. Zhao (2017): “Telework: Urban form, energy consumption, and

greenhouse gas implications,” Economic Inquiry, 55(2), 714–735.
Lee, E. (2020): “Trade, inequality, and the endogenous sorting of heterogeneous workers,”

Journal of International Economics, 125, 103310.

49



Lennox, J. (2020): “More working from home will change the shape and size of cities,”

Working Paper.

Li, W., and Y. Su (2021): “The Great Reshuffle: Residential Sorting During the COVID-19

Pandemic and Its Welfare Implications,” Working paper.

Liu, S., and Y. Su (2021): “The impact of the COVID-19 pandemic on the demand for

density: Evidence from the U.S. housing market,” Economics Letters, 207, 110010.
(2023): “The Effect of Working from Home on the Agglomeration Economies of

Cities: Evidence from Advertised Wages,” Working Paper.

LODES (2016): Longitudinal Employer-HouseholdDynamicsOrigin-DestinationEmploy-

ment Statistics, U.S. Census Bureau. https://lehd.ces.census.gov/data/. Accessed
September 2020.

Mas, A., and A. Pallais (2020): “Alternative Work Arrangements,” Annual Review of
Economics.

Mondragon, J. A., and J. Wieland (2022): “HousingDemand andRemoteWork,”Working

Paper 30041, National Bureau of Economic Research.

Mongey, S., L. Pilossoph, and A. Weinberg (2020): “Which Workers Bear the Burden of

Social Distancing?,” Working Paper 27085, National Bureau of Economic Research.

Monte, F., C. Porcher, and E. Rossi-Hansberg (2023): “Remote Work and City Structure,”

Working Paper.

Monte, F., S. J. Redding, and E. Rossi-Hansberg (2018): “Commuting, Migration, and

Local Employment Elasticities,” American Economic Review, 108(12), 3855–90.
Moretti, E. (2012): The New Geography of Jobs. Houghton Mifflin Harcourt, New York.

(2013): “RealWage Inequality,”American Economic Journal: Applied Economics, 5(1),
65–103.

NHTS (2017): National Household Transportation Survey, Federal Highway Adminis-

tration, U.S. Department of Transportation. https://nhts.ornl.gov/ Accessed May

2021.

Ozimek, A. (2020): “Remote Workers on the Move,” Upwork Economist Report.

Pabilonia, S. W., and V. Vernon (2023): Remote work, wages, and hours worked in the United
States. IZA-Institute of Labor Economics.

Ramani, A., and N. Bloom (2021): “The Donut Effect of Covid-19 on Cities,” Working

Paper 28876, National Bureau of Economic Research.

Rappaport, J. (2022): “Hybrid Working, Commuting Time, and the Coming Long-Term

Boom in Home Construction,” Kansas City Fed Economic Review, 107 (4).
Rhee, H.-J. (2008): “Home-based telecommuting and commuting behavior,” Journal of
Urban Economics, 63(1), 198–216.

Richard, M. (2024): “The Spatial and Distributive Implications of Working-from-Home:

A General Equilibrium Model,” Discussion paper, Working Paper.

Rosenthal, S. S., W. C. Strange, and J. A. Urrego (2021): “JUE insight: Are city centers

losing their appeal? Commercial real estate, urban spatial structure, and COVID-19,”

Journal of Urban Economics, p. 103381.
Safirova, E. (2003): “Telecommuting, traffic congestion, and agglomeration: a general

equilibrium model,” Journal of Urban Economics, 52(1), 26–52.

50

https://lehd.ces.census.gov/data/
https://nhts.ornl.gov/


Saiz, A. (2010): “The Geographic Determinants of Housing Supply*,” The Quarterly Journal
of Economics, 125(3), 1253–1296.

SIPP (2018): Survey of Income and Program Participation, U.S. Census Bureau. https:
//www.census.gov/programs-surveys/sipp/data/datasets/2018-data/2018.html.
Accessed September 2020.

Spear, B. D. (2011): NCHRP 08-36, Task 098 Improving Employment Data for Transportation
Planning. American Association of State Highway and Transportation Officials.

Stanton, C. T., and P. Tiwari (2021): “Housing Consumption and the Cost of Remote

Work,” Working Paper 28483, National Bureau of Economic Research.

Tsivanidis, N. (2019): “The Aggregate and Distributional Effects of Urban Transit Infras-

tructure: Evidence from Bogotá’s TransMilenio,” Working Paper.

Valentinyi, A., and B. Herrendorf (2008): “Measuring factor income shares at the sectoral

level,” Review of Economic Dynamics, 11(4), 820–835.
Van Nieuwerburgh, S. (2023): “The remote work revolution: Impact on real estate values

and theurban environment: 2023AREUEAPresidentialAddress,”Real Estate Economics,
51(1), 7–48.

Van Nieuwerburgh, S., and P.-O. Weill (2010): “Why Has House Price Dispersion Gone

Up?,” Review of Economic Studies, 77(4), 1567–1606.
Veuger, S., P. G. Hoxie, and L. Brooks (2023): “Working from Density,” Working Paper.

Walls, M., E. Safirova, and Y. Jiang (2006): “What Drives Telecommuting? The Relative

Impact of Worker Demographics, Employer Characteristics, and Job Types,” Discussion

papers, Resources For the Future.

Zhu, P. (2012): “Are telecommuting and personal travel complements or substitutes?,” The
Annals of Regional Science, 48(2), 619–639.

51

https://www.census.gov/programs-surveys/sipp/data/datasets/2018-data/2018.html
https://www.census.gov/programs-surveys/sipp/data/datasets/2018-data/2018.html


Appendix

A Data

A.1 Telecommuting Frequencies

To study the frequency of working from home for individuals in various industries and

education levels, we use the data from the 2018 Survey of Income and Program Participa-

tion (SIPP). The survey asks how many full paid work days a survey respondent worked

in a reference week. We focus our analysis on full-time workers 16 years or older who are

not self-employed. Our estimates are based on a final sample of 261,757 observations.

A.2 Local Wage Indices

Our sources of wage data is the Census Transportation Planning Products (CTPP), ag-

gregated at the Census tract level, and microdata from the American Community Survey

(ACS). We use the data reported for the period from 2012 to 2016. We use the variable

“earnings in the past 12 months (2016 $), for the workers 16-year-old and over,” which is

based on the respondents’ workplace locations. The variable provides the estimates of the

number of people in each of the several earning bins in each workplace tract.56

We calculate mean labor earnings for tract k as w̄k =
(∑

b Nb,kw̄b
)
/
∑

b Nb,k, where Nb,k

is the number of workers in bin b in tract k, and w̄b is mean earnings in bin b for each

PUMA, calculated from theACSmicrodata. Next, to control for possible effects ofworkers’

heterogeneity on tract-level averages, we estimate

w̄k = α + β1agek + β2sexratiok +
∑

r

β2,rracer,k +
∑

d

β3,dindd,k +
∑

o

β4,oocco,k + εk, (A.1)

where agek is the average age in tract k; sexratiok is the proportion of males to females

in local labor force; racer,k is the local share of race r ∈ {Asian,Black,Hispanic,White} in
the tract; indd,k is the local share of jobs in industry d; and occo,k is the local share of

jobs in occupation o.57 The estimated wage index is the sum of the constant and the

56The bins are≤ $9, 999; $10, 000–$14, 999; $15, 000–$24, 999; $25, 000–$34, 999; $35, 000–$49, 999; $50, 000–
$64, 999; $65, 000–$74, 999; $75, 000–$99, 999; and ≥ $100, 000.

57We use the following industry categories: Agricultural; Armed force; Art, entertainment, recreation,

accommodation; Construction; Education, health, and social services; Finance, insurance, real estate; Infor-

mation; Manufacturing; Other services; Professional scientific management; Public administration, Retail.

We use the following occupation categories: Architecture and engineering; Armed Forces; Arts, design,

entertainment, sports, and media; Building and grounds cleaning and maintenance; Business and financial
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tract fixed effect: ŵ0
k ≡ α̂ + ε̂k. We then build wage indices for each location j, ŵ0

j , as the

employment-weighted average of ŵ0
k for each tract k that pertains to location j.

Then, using microdata from the American Community Survey (ACS), we calculate

average wage premia for college over non-college workers, and tradable industry over

non-tradable industry workers, separately at the place-of work public-use microdata area

(POWPUMA) level, and assume that they are uniformacross allmodel locations belonging

to a single POWPUMA.58 Let the collegewage premium formodel location j be designated
φH

j , and for the sake of concision of presentation let us also define a non-college wage

“premium” φL
j = 1. Let the tradable industry premium for model location j be defined as

ρG
j , while the non-tradable “premium” is ρS

j = 1.
For each location j, we need the two sets of conditions to hold. First, the relation-

ships between the wages paid to different education and industry categories implied

by the “premia” we have just defined: ŵs
mj/ŵ

s′
m′ j =

(
φs

jρ
m
j

)
/
(
φs′

j ρ
m′
j

)
for s, s′ ∈ {H,L} and

m,m′ ∈ {G,S}. Second, we need the average wage to match the one derived from the

data, given the relative prevalence of each type of worker:

∑
s
∑

m ŵs
mjπ

s
mj = ŵ0

j , where

conditional choice probabilities πs
mj ≡

∑
i
∑

o π
so
mij, reflecting the total number of workers of

each education level and industry with jobs in j, from all residence locations and occu-

pations, are constructed as follows: we observe πmj ≡
∑

s
∑

i
∑

o π
so
mij for each location, and

observe πs
m0 ≡

∑
i
∑

j
∑

o π
so
mij at the economy-wide level, and assume that the educational

composition of industry does not vary by location: πs
mj = πmjπs

m0.

Manipulating these two sets of conditions, we can calculate ŵs
mj as follows. First, the

average wage for college-educated workers in the tradable sector, as a function of ŵ0
j , is

ŵH
Gj = ŵ0

j/
∑

s
∑

m
φs

jρ
m
j

φH
j ρ

G
j

∑
i
∑

o π
so
mij. Then, wages for other workers are ŵs

mj =
φs

jρ
m
j

φH
j ρ

G
j
ŵH

Gj. These

are then translated into wages in the model ws
mj, according to the following equation:

ws
mj =

(
ŵs

mj

)α
αα(1 − α)1−α


∑

i
∑

o π
so
mij∑

i
∑

o π
so
mijΩ

so
mij

α . (A.2)

A.3 Telecommuters’ Distance to Job Sites

To study the relationshipbetween thepropensity toworkat homeand thedistancebetween

home and job site, we use data from the 2017 National Household Transportation Survey

operations specialists; Community and social service; Computer and mathematical; Construction and ex-

traction; Education, training, and library; Farmers and farm managers; Farming, fishing, and forestry; Food

preparation and serving related; Healthcare practitioners and technicians; Healthcare support; Installation,

maintenance, and repair; Legal; Life, physical, and social science; Management; Office and administrative

support; Personal care and service; Production;Protective service; Sales and related.

58POWPUMAs are larger than PUMAs and even in dense urban areas often correspond to counties.
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(NHTS).We focus on full timeworkers in the 48 contiguousUnited States andWashington,

D.C. Bins for each commuting frequency are constructed as follows: 5 days per week

telecommuters reported working from home more than 90% of the days in a 21.67-day

average work month; 4 days–between 90% and 70%, 3 days–between 70% and 50%, etc.

The sample comprises 83,512 observations. The distance between home and job site is

great circle distance as reported in the database. Those who reported working from home

over 22 days a month are excluded.

A.4 Local Rent Indices

We measure local rents by constructing hedonic rent indices at the level of PUMAs. In

cases when a PUMA contains more than one model location we assign the same index to

all. Weuse the 2016 5-yearACS sample tabulated by the IPUMS (ACS, 2016).59 To construct

local rent indices, we use self-reported rents and estimate the following regression,

lnqι,it = β0 + β1Xι,it + ϕi + ϕt + ει,it, (A.3)

where qι,it is the rent reported by household ι in PUMA i and year t, while Xι,it is a

vector of controls that includes the number of rooms in the dwelling, the number of

units in the structure (e.g., single-family detached, 2-family building), and the year of

construction. Parameters ϕi and ϕt are PUMA and year fixed effects, respectively, and ει,it
is the error term. The rent index,Qi, represents the rent after controlling for the observable

characteristics listed before and idiosyncratic effects, and is given by Qi ≡ exp
(
β0 + ϕi

)
.

A.5 Estimation of Travel Times

We follow the practice recommended by Spear (2011) and use LODES data as ameasure of

commuting flows and Census Transportation Planning Products (CTPP) data to provide

information on commute times. The CTPP database reports commuting time data for

origin-destination pairs of Census tracts across the contiguous United States for 2012–

2016, and is tabulated using American Community Survey (ACS) data.60 Travel times

are reported for a little over 4 million trajectories, a small fraction of all possible bilateral

59Wekeep only household heads to ensure that the analysis is at the level of a residential unit. We exclude

observations who live in group quarters; live in farm houses, mobile homes, trailers, boats, tents, etc.; are

younger than 18 years old; and live in a dwelling that has no information on the year of construction.

60The CTPP data divides commuting times into 10 bins: less than 5 minutes, 5 to 14 minutes, 15 to 19

minutes, 20 to 29 minutes, 30 to 44 minutes, 45 to 59 minutes, 60 to 74 minutes, 75 to 89 minutes, 90 or more

minutes, and work from home.
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trajectories, because most pairs of tracts are far enough apart that the ACS survey does not

observe anyone commuting between them. We process this data in the following steps.

First, we calculate average travel time between each pair of locations as the average of

all tract-to-tract times with an origin inside one location and a destination in the other. We

throw out the calculation for any pair for which less than 10% of all possible tract-to-tract

times is reported by CTPP. We also exclude times that imply a speed of more than 100

km/hour or less than 5 km/hour. We perform this same calculation for average distance

of each location from itself, obtaining data-based estimates of internal travel times.

Second, to prevent “breaks” in the network, we check to see if any location does not

have an estimated travel time to its 5 nearest neighbors. If any are missing, we project a

one using estimated coefficients of a regression of average location-to-location travel times

on average great circle distance and an indicator of origin = destination. This procedure

adds ≈10,000 additional links, out of 20,268,004 possible location-to-location trajectories.

Finally, we take the ≈34,000 primitive connections, the travel times for which we have

calculated as detailed above, as the first-order connections in a transport network. We use

Dĳkstra’s algorithm to find the least possible travel times through this network between

each pair of model locations.

B Existence and Uniqueness of an Equilibrium

Consider a simplified version of our model with fixed floorspace supply, single industry,

no heterogeneity in education, and no externalities in residential amenities. Also, let all

workers have an occupation that allows telecommuting. Without telework, this model

corresponds to a version of Ahlfeldt, Redding, Sturm, and Wolf (2015) for which Allen,

Arkolakis, and Li (2020) derive sufficient conditions for existence and uniqueness.

The simplified model’s equilibrium can be written as a system of I × 3 equations in

floorspace prices, supply of on-site work days, and productivity as

q1+γε
i =

∑
j∈I

γ

H̄Ri
Φ−1/εBεi jQ̃

−ε
i j Q

1+ε(1+α(ζ−1))
α(ζ−1)

i j ᾱ1+εA
1+ε
α

j , (B.1)

NWCi =
∑
j∈I

q−(1−α)(ζ−1)
i q−γεj Φ−1/εBεjiQ̃

−ε
ji Q

ε+α(ε−1)(ζ−1)
α(ζ−1)

ji ᾱεA
ε
α

i , (B.2)

Ai = ai

(NWCi

Λi

)λ
, (B.3)

where H̄Ri is the exogenous supply of residential floorspace andΦ1/ε
is expected utility. Let
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Q1
i j ≡ q−(1−α)(ζ−1)

j , Q̃1
i j ≡ Q

1
i je
κti j

, and Q2
i j = νζ−1q−(1−α)(ζ−1)

i eκti j(1+α(ζ−1))
, as well as Qi j ≡ Q1

i j +Q2
i j

and Q̃i j ≡ Q̃1
i j +Q2

i j.

Note that the system (B.1)–(B.3) has the form of system (1) in Allen, Arkolakis, and Li

(2020) and can be written as Xih =
∑

j∈IFi jh

(
X j1, ...,X jH

)
, where h refers to an interaction

of a particular type. In our case, there are 3 interactions with X j1 = q j, X j2 = NWCj, and

X j3 = A j. Let Ei j (XhXh′) ≡ ∂ lnFi jh/∂ lnX jh′ . Using results from Allen, Arkolakis, and

Li (2020), we can study existence and uniqueness by studying the properties of the 3 × 3
matrix where each component is given by maxi, j

{∣∣∣Ei j (XhXh′)
∣∣∣}.

Because effective effort and commuting costs include additive terms, two out of nine

cross-elasticities that form the above-mentioned matrix are location-specific:

Ei j(q, q) = 1−α
1+γε

[
ε(ζ − 1)

Q̃1
i j

Q̃i j
−

1+ε(1+α(ζ−1))
α

Q1
i j

Qi j

]
, (B.4)

Ei j(NWC, q) =


1−α
1+γε

[
ε(ζ − 1)

Q2
ji

Q̃ ji
−

ε+α(ε−1)(ζ−1)
α

Q2
ji

Q ji

]
−

γε
1+γε if j , i,

1−α
1+γε

[
ε(ζ − 1)

Q̃1
ji

Q̃ ji
−

ε+α(ε−1)(ζ−1)
α

Q1
ji

Q ji

]
−

γε+(1−α)(ζ−1)
1+γε if j = i.

(B.5)

That is, existence and uniqueness may depend on location-specific outcomes; however,

we can check the domain of

{
Q̃1

i j/Q̃i j,Q1
i j/Qi j,Q2

ji/Q̃ ji,Q2
ji/Q ji

}
to obtain maximum absolute

values of (B.4) and (B.5), given values of α, γ, ε, ζ, λ, κ, and ν from our calibrated model

(see Tables 2 and 3).61 We do so by noticing that ti j ∈ [0,∞) and qi ∈ (0,∞). Thus, the

matrix of cross-elasticites maxi, j

{∣∣∣Ei j (XhXh′)
∣∣∣} for h ∈

{
q,NWC,A

}
is

A ≡


1−α
1+γε

1
1+νζ−1

[
1+ε(1+α(ζ−1))

α − ε(ζ − 1)
]

0 1+ε
α

1−α
1+γε

1
1+νζ−1

[
ε+α(ε−1)(ζ−1)

α − ε(ζ − 1)
]

+
γε+(1−α)(ζ−1)

1+γε 0 ε
α

0 λ 0

 (B.6)

Existence and uniqueness. According to Theorem 1 in Allen, Arkolakis, and Li (2020),

if A has a spectral radius less than 1, then the equilibrium exists and is unique. For the

parameter values in our calibrated model, the spectral radius of A is 1.0084, marginally

greater than 1. That is, in the simplified version of our model the equilibrium is not

guaranteed to exist and, if it does, multiple equilibria exist.

How does this finding compare to the result of Allen, Arkolakis, and Li (2020) for a

model without telework? They find that, as long as the productive externality is weak

enough, λ < min
{
1 − α, α

1+ε

}
, the equilibrium is unique. In our model, λ = 0.086 and

min
{
1 − α, α

1+ε

}
= 0.162. That is, if our simplified model did not have work from home,

61Our calibrated model has multiple values of ν and ζ depending on education and industry. We use

weighted-average values of each parameter.

56



the externality would be weak enough to yield uniqueness.

Why does the introduction of the ability to substitute on-site and remote work result

in multiple equilibria? In a standard model, the extent to which a location with high

exogenous productivity attracts workers is amplified via agglomeration externalities but,

in turn, is dampened as the number of workers willing to commute there daily is limited.

This is because commuting costs and idiosyncratic location preferences jointly constitute a

congestion force. Work from home expands the firm market access (or “catchment area”)

in such locations so they can attract more workers because they do not have to commute

daily. As a result, even modest values of λ can lead to multiple equilibria.

To confirm this reasoning, we found thatwhenλ < 0.084, the spectral radius ofA is less

than 1. We also shut down the ability to telecommute by setting ζ = 0 and ν = 0. In this

case, evenwith λ = 0.086, the spectral radius is 0.82, and there exists a unique equilibrium.

Since we assumed that in this version of the model all workers can telecommute, even

though in the data only 34% of workers can work remotely, the latter result is highly

relevant and, all else equal, makes the uniqueness of an equilibrium in our quantitative

model a likely outcome.

C Model Quantification

C.1 Estimation of the Fréchet elasticity

To obtain the value of the Fréchet elasticity of location preference shocks ε, we construct

a log-likelihood function that combines the number of commuters on each (i, j) link and

the probability of commuting along this link:

lnL ≡
∑
i∈I

∑
j∈I

Ni j ln

 X̄iĒ je−(κ+τ)εti j∑
i′∈I

∑
j′∈I

X̄i′Ē j′e−(κ+τ)εti′ j′

 . (C.1)

In this expression, Ni j is the number of commuters from i to j in the LODES data, X̄i and Ē j

are origin anddestination fixed effects that subsume all relevant local variables that appear

in the conditional location choice probability (equation 3.4), and ti j is the commuting time

from i to j.62 We estimate the value of (κ+ τ)ε using Poisson pseudo maximum likelihood

62Because LODES and CTPP do not distinguish commuters and telecommuters, we estimate this rela-

tionship assuming that all observations commute to the job site all the time, i.e., are workers with θ = 1.
Moreover, because we only observe employment levels but not flows by either industry or education, we

cannot estimate the Fréchet elasticity separately for different worker types.
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Table C.1: Estimation of the Fréchet Elasticity of Location Choice

ti j -0.04428

(0.00013)

Observations 20,268,004

Pseudo R2
0.967

Note: This table reports estimated coefficients for equation (C.1). Standard errors are in parentheses.

Estimation includes residence and workplace fixed effects.

(PPML).63 Prior to estimation, we set Ni j = 0 for all pairs with commuting times of more

than 3 hours one way.64 As reported in Table C.1, our estimate of (κ + τ)ε is 0.0443. To

recover ε, we use the value κ + τ = 0.011 and obtain ε = 0.0443/0.011 = 4.026.

C.2 Inversion and Calibration Algorithm

In order to obtain the values of location-specific fundamentals ãmi ≡ amiΛ
−λ
i , x̃s

mi ≡ xs
miΛ

−χ
i ,

φ̃i ≡ φiΛi, Xmi, Xs
i , Emj, Es

j, and ωmj, as well as economy-wide parameters νs
m, ς

s
m, ζ

s
m, τ, and

β, we invert the model using the following sequence of steps.

1. Guess the values of Xmi, Xs
i , Emj, Es

j, ν
s
m, ς

s
m, ζ

s
m, τ, and β.

2. Perform the following sequence:

(a) Solve for industry and location choice probabilities, πso
mij, using equation (3.3)

and compute residential population and employment by education and indus-

try as follows: NRmi =
∑

s
∑

o
∑

j π
so
mij, Ns

Ri =
∑

o
∑

m
∑

j π
so
mij, NWmj =

∑
s
∑

o
∑

i π
so
mij,

and Ns
W j =

∑
o
∑

m
∑

i π
so
mij.

(b) Solve for optimal commuting frequency, θso
mij, using equation (3.12) and find the

average for each (m, s) type: θ̄s
m ≡

(∑
o
∑

i
∑

j π
so
mijθ

so
mij

)
/
(∑

o
∑

i
∑

j π
so
mij

)
.

(c) Compute the variance of commuting frequencies for each (m, s) for the interval
θ ∈ [0.2, 0.8]: Var(θm

s |θ ∈ [0.2, 0.8]).
(d) Compute the average distance between residence and job site for “commuters”

(θ > 0.9) and “telecommuters” (θ ≤ 0.9), and then calculate the ratio of the two

numbers.

63We use PPML rather than OLS because 98.4% of location pairs in our data have zero flows. As Dingel

and Tintelnot (2020) show, the sparse nature of commuting matrices may result in biased OLS estimates of

the Fréchet elasticity and poor model fit.

64Out of 139 mln commuters we observe in LODES, 9.8 mln travel between locations that are over 3

hours apart. While some of these observations could be full-time telecommuters, due to reasons outlined

in Graham, Kutzbach, and McKenzie (2014), many of these long commutes arise due to errors in assigning

work or residence locations. In addition, the evidence in Figure 2 shows that most telecommuters do not

live extremely far from their employers and therefore are unlikely to be dropped from our analysis.
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(e) Solve for optimal effort Ωso
mij and commuting costs, as a function of optimal

commuting frequency, dso
mij, using equations (3.11) and (3.2), respectively.

(f) Solve for wages and disposable income: (i) convert wages observed in the

tradable sector in the data to the measure of wages used in the model using

equation (A.2); (ii) find disposable income using equation (3.10).65

(g) Combine equations (3.15) and (3.18) to find ωmj:

ωmj =

1 +

wH
mj

wL
mj


1+α(ξ−1)

αξ


∑
o

∑
i
πLo

mijΩ
Lo
mij∑

o

∑
i
πHo

mijΩ
Ho
mij


1
ξ


−1

(C.2)

(h) Solve for labor productivity in the non-tradable sector using the data on prices

of non-tradables and equation (3.21).

(i) Compute the ratio between mean wages in tradable/non-tradable sectors.

(j) Compute for each industry/education pair the ratio between mean wages for

telecommutable workers with θ > 0.8, and those with θ < 0.2.
(k) Update X̄mi, X̄s

i , Ēmj, Ēs
j: increase X̄mi if the value of NRmi in the model is lower

than in the data, reduce it otherwise; increase X̄s
i if the value of Ns

Ri in the model

is lower than in the data, reduce it otherwise; increase Ēmj if the value of NWmj

in the model is lower than in the data, reduce it otherwise; increase Ēs
j if the

value of Ns
W j in the model is lower than in the data, reduce it otherwise.

(l) Update the work-from-home aversion ςs
m: increase ς

s
m if the average θ of type

(m, s) in the data is greater than the value of θ̄s
m; reduce ν

s
m otherwise.

(m) Update the work-from-home productivity νs
m: increase νs

m if the wage ratio

between telecommutable workers with θ < 0.1 to those with θ > 0.9 is lower

than the wage gap between those who work from home full-time to those who

commute full time in the data; reduce νs
m otherwise.

(n) Update τ: increase τ if the ratio of average distance between residence and job

site for “commuters” to “telecommuters” is higher in the model than its data

counterpart; reduce τ otherwise.

(o) Update the non-tradables expenditure share β: increase β if the ratio between

mean wages in tradable/non-tradable sectors is lower in the model than in the

data; decrease β otherwise.

65As discussed in Section C.3, our model is overidentified because employment amenities determine

both local employment by industry and education and the college wage premium in the non-tradable sector.

Thus, we take wages in the tradable sector directly from the data, while wages in the non-tradable sector

are determined within the model.
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(p) Return to step (2a) and repeat the sequence, unless moments computed in steps

(2a), (2b), (2c), (2d), (2i), and (2j) in the model are equal to their counterparts in

the data within a tolerance limit.

3. Construct education-industry amenities as Xs
mi = XmiXs

i and Es
mj = EmjEs

j.

4. Compute the exogenous part of amenities, x̃s
mi ≡ xs

miΛ
−χ
i , using equation (3.26) as

follows: x̃s
mi = Xs

mi/ (NRi)
χ , where NRi and NWTj are constructed using probabilities

computed in step (2a).

5. Compute the exogenous part of productivity, ãmi ≡ amiΛ
−λ
i , using equation (3.25) as

follows: ãmi = Amj/
(
NWCj + ψNWTj

)λ
, where NWCj and NWTj are constructed from

choice probabilities computed in step (2a), and commuting frequencies computed

in step (2b).

6. Compute floorspace demand Hi and then compute construction sector productivi-

ties, φ̃i ≡ φiΛi, using equations (3.23) and (3.24) as follows: φ̃i = Hiq
−

1
ηi

i (1 − ηi)
−

1−ηi
ηi .

C.3 Proof of Proposition 1: Existence and Uniqueness of Inversion

In what follows we prove that there exists a unique set of parameters consistent with the

data being an equilibrium of themodel.66 These parameters are ãmi ≡ amiΛ
−λ
i , x̃s

mi ≡ xs
miΛ

−χ
i ,

φ̃i ≡ φiΛi, Xmi, Xs
i , Emj, Es

j, and ωmj.

Existence and uniqueness of employment amenities. Recall that we assume that

employment amenities can be split into an education- and an industry-specific component

as Es
mj = EmjEs

j. Note that once the markets for non-college and college labor, as well as

labor in the non-tradable industry clear, the market for labor in the tradable industry will

clear as well. Thus, we can normalize EGj = 1 for all j. Define composite employment

amenities as a function of amenities per se and wages:

ÊmjÊs
j = EmjEs

jw
s
mj. (C.3)

In equilibrium, these three labormarket clearing conditionsmust hold in each location:

DL
W j

(
ÊL, ÊH, ÊS

)
≡ NL

W j −

∑
i

NL
Ri

∑
o


(
ÊSjÊL

j Φ
Lo
Sij

)ε
∑

j′
(
ÊSj′ÊL

j′Φ
Lo
Sij′

)εnLo
RSi +

(
ÊL

j Φ
Lo
Gij

)ε
∑

j′
(
ÊL

j′Φ
Lo
Gij′

)εnLo
RGi

 = 0,

(C.4)

66The proof follows closely Ahlfeldt, Redding, Sturm, and Wolf (2015) (see Propositions S.3 and S.4 in

their appendix) but requires extra steps due to the nature of our model and data. When appropriate, we

refer to lemmas and equations in their proof.
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DH
W j

(
ÊL, ÊH, ÊS

)
≡ NH

W j −

∑
i

NH
Ri

∑
o


(
ÊSjÊH

j ΦHo
Sij

)ε
∑

j′
(
ÊSj′ÊH

j′Φ
Ho
Sij′

)εnHo
RSi +

(
ÊH

j ΦHo
Gij

)ε
∑

j′
(
ÊH

j′Φ
Ho
Gij′

)εnHo
RGi

 = 0,

(C.5)

DWSj

(
ÊL, ÊH, ÊS

)
≡ NWSj −

∑
i

NRSi

∑
o


(
ÊSjÊL

j Φ
Lo
Sij

)ε
∑

j′
(
ÊSj′ÊL

j′Φ
Lo
Sij′

)εnLo
RSi +

(
ÊSjÊH

j ΦHo
Sij

)ε
∑

j′
(
ÊSj′ÊH

j′Φ
Ho
Sij′

)εnHo
RSi

 = 0,

(C.6)

where Φso
mij ≡

1
gi jdso

mij

Ωso
mij

pβi qγi
and nso

Rmi ≡ Nso
Rmi/NRmi.67 Note that dso

mij and Ωso
mij are functions of

observed floorspace prices and the productivity of telework. Each of these conditions

are of the form of the market clearing condition (S.43) in Ahlfeldt, Redding, Sturm, and

Wolf (2015). Thus, using the same steps as in their Lemma S.6, we can show that function

Ds
W j

(
ÊL, ÊH, ÊS

)
is continuous, homogeneous of degree zero, and exhibits gross substitu-

tion in Ês
for all s ∈ {L,H}. Similarly, functionDWSj

(
ÊL, ÊH, ÊS

)
is continuous, homogeneous

of degree zero, and exhibits gross substitution in ÊS
. Moreover,

∑
j Ds

W j

(
ÊL, ÊH, ÊS

)
= 0

and

∑
j DWSj

(
ÊL, ÊH, ÊS

)
= 0 for all s ∈ {L,H}, j ∈ I, and

{
ÊL, ÊH, ÊS

}
∈ RI

+ ×R
I
+ ×R

I
+.

Next, using the same steps as in Lemma S.7 in Ahlfeldt, Redding, Sturm, and Wolf

(2015), we can demonstrate that, given the parameters

{
ε, κ, τ, α, ζs

m, ν
s
m
}
and observables{

NWm,NRm,q,p, t
}
: (1) conditional on ÊS, there exists a unique vector ÊL

that solves (C.4) for

all j; (2) conditional on ÊS, there exists a unique vector ÊH
that solves (C.5) for all j; and (3)

conditional on

{
ÊL, ÊH

}
, there exists a unique vector ÊS that solves (C.6) for all j. However,

uniqueness of each vector of employment amenities conditional on another vector does

not imply that the set of vectors

{
ÊL, ÊH, ÊS

}
consistentwith labormarket clearing is unique.

In order to show that it is indeed unique, we employ a strategy similar to the first part of

the proof of Lemma S.7 in Ahlfeldt, Redding, Sturm, and Wolf (2015).

Lemma C.1. Given the parameters

{
ε, κ, τ, α, ζs

m, ν
s
m, ς

s
m
}
observables

{
NWm,NRm,q,p, t

}
,

there exist a unique set of vectors

{
ÊL, ÊH, ÊS

}
such that conditions (C.4), (C.5), and (C.6)

hold for all j.

Proof. The existence of

{
ÊL, ÊH, ÊS

}
is guaranteed by the existence of each separate vector

ÊL
, ÊH

, and ÊS that solves equations (C.4), (C.5), and (C.6), respectively, that we established

above. Below we show that this set is also unique.

Denote by DW

(
ÊL, ÊH, ÊS

)
a stacked 3I × 1 vector that is composed of DL

W j

(
ÊL, ÊH, ÊS

)
,

DH
W j

(
ÊL, ÊH, ÊS

)
, and DWSj

(
ÊL, ÊH, ÊS

)
for all j. Suppose that there exist two sets

{
ÊL, ÊH, ÊS

}
67Even though employment shares nso

Rmi are unobserved, their presence does not change the properties

of market clearing conditions that are required for the set of employment amenities to exist and be unique.
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and

{
ẼL, ẼH, ẼS

}
such that

{
ÊL, ÊH, ÊS

}
,

{
ẼL, ẼH, ẼS

}
, whileDW

(
ÊL, ÊH, ÊS

)
= DW

(
ẼL, ẼH, ẼS

)
=

0. By homogeneity of degree zero, we can rescale each of ẼL
, ẼH

, and ẼS such that ẼL
j ≥ ÊL

j ,

ẼH
j ≥ ÊH

j , and ẼSj ≥ ÊSj for all j, whereas ẼL
i = ÊL

i , ẼH
i = ÊH

i , and ẼSi = ÊSi for some i.

Next, consider adjusting

{
ẼL, ẼH, ẼS

}
to

{
ÊL, ÊH, ÊS

}
in I− 1 steps. By gross substitution, the

excess labor demand in location i cannot decrease in any step andmust increase in at least

one step. Therefore, DL
Wi

(
ẼL, ẼH, ẼS

)
> DL

Wi

(
ÊL, ÊH, ÊS

)
, DH

Wi

(
ẼL, ẼH, ẼS

)
> DH

Wi

(
ÊL, ÊH, ÊS

)
,

and DWSi

(
ẼL, ẼH, ẼS

)
> DWSi

(
ÊL, ÊH, ÊS

)
, a contradiction. Thus, there exists a unique set of

vectors

{
ÊL, ÊH, ÊS

}
such that DW

(
ÊL, ÊH, ÊS

)
= 0. �

Existence and uniqueness of residential amenities. We can also define the following

labor market clearing conditions in terms of the number of residents:

DL
Rj

(
XL,XH,XS

)
≡ NL

Rj −

∑
j

NL
W j

∑
o


(
XSiXL

i ΦLo
Sij

)ε
∑

i′
(
XSi′XL

i′Φ
Lo
Si′ j

)εnLo
WSj +

(
XL

i ΦLo
Gij

)ε
∑

i′
(
XL

i′Φ
Lo
Gi′ j

)εnLo
WGj

 = 0,

(C.7)

DH
Rj

(
XL,XH,XS

)
≡ NH

Rj −

∑
j

NH
W j

∑
o


(
XSiXH

i ΦHo
Sij

)ε
∑

i′
(
XSi′XH

i′ Φ
Ho
Si′ j

)εnHo
WSj +

(
XH

i ΦHo
Gij

)ε
∑

i′
(
XH

i′ Φ
Ho
Gi′ j

)εnHo
WGj

 = 0,

(C.8)

DRSj

(
XL,XH,XS

)
≡ NRSj −

∑
j

NWSj

∑
o


(
XSiXL

i ΦLo
Sij

)ε
∑

i′
(
XSi′XL

i′Φ
Lo
Si′ j

)εnLo
WSj +

(
XSjXH

i ΦHo
Sij

)ε
∑

i′
(
XSi′XH

i′ Φ
Ho
Si′ j

)εnHo
WSj

 = 0.

(C.9)

Then we could proceed exactly as above to show that there exists a unique set

{
XL,XH,XS

}
consistent with those market clearing conditions.

LemmaC.2. Given the parameters

{
ε, κ, τ, α, ζs

m, ν
s
m, ς

s
m
}
and observables

{
NWm,NRm,q,p, t

}
,

there exists a unique set of vectors

{
XL,XH,XS

}
such that conditions (C.7), (C.8), and (C.9)

hold for all j.

Proof. The proof is identical to the proof of Lemma C.1. �

Decomposition of wages and employment amenities. Wehave shown the uniqueness

of composite employment amenities that incorporate wages (equation C.3). Given that we

observewages by education and industry for eachmodel location, we can nowdecompose

the amenities in the tradable sector Ês
G into a non-wage component Es

G and wages. We

can also determine the college premium, wH
Sj/w

L
Sj, but not wage levels, in the non-tradable

sector.
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LemmaC.3. Given the parameters

{
ε, κ, τ, α, ζs

m, ν
s
m, ς

s
m
}
observables

{
NWm,NRm,q,p, t, ŵs

G

}
,

there exists a unique vector Es
G for each s ∈ {L,H} and a unique college wage premium in

the non-tradable sector.

Proof. Note, by inspection of the indirect utility function (3.1) and choice probability (3.3),

that uniqueness of

{
ÊL, ÊH, ÊS

}
and Xs

m implies that choice probabilities are also unique,

conditional on observables. Here each element of Xs
m is Xs

mi = Xs
i Xmi This means that there

is a unique mapping between education-industry-specific wages in the tradable sector

observed in the data, ŵs
Gj, and their model counterpart, ws

Gj, as given by equation (A.2).

Once wages are known, we can solve for Es
j = Ês

j/w
s
Gj, where we used the fact that ÊGj = 1.

Next, observe that in the non-tradable sector, Ês
jÊSj = Es

jESjwH
sj. Though we cannot

separately identify amenities fromwages, we can determine the college wage premium as

wH
Sj

wL
Sj

=
ÊH

j ÊSj

ÊL
j ÊSj

ÊL
j

ÊH
j

, (C.10)

since both ratios on the right-hand side are identified. �

Existence and uniqueness of local productivities. The following result demonstrates

that there are unique vectors of parameters that determine local productivity in tradable

sector, non-tradable sector, and construction that are consistent with observed data and

unobserved skill and occupation shares.

LemmaC.4. Given theparameters

{
ε, κ, τ, α, ζs

m, ν
s
m, ς

s
m
}
, observables

{
NWm,NRm,q,p, t, ŵs

G

}
,

employment amenities in the tradable sectorEs
G, collegewagepremium in thenon-tradable

sector wH
Sj/w

L
Sj, and residential amenities Xs

m, there exist unique vectors ωm ∈ RI
++ and

Am ∈ RI
++ for each m ∈ {G,S}, and a unique vector φ̃ ∈ RI

++.

Proof. There is sufficient information to construct a unique matrix of choice probabilities.

Thus, the results follow immediately from equation (C.2), the zero-profit condition (3.20),

and the land and floorspace market clearing conditions, (3.23) and (3.24). �

Wages in the non-tradable sector. Note that our model is overidentified because

employment amenities determine both local employment by industry and education and,

as shown in equation (C.10), the college wage premium in the non-tradable sector. Thus,

while our quantitative model takes wages in the tradable sector directly from the data,

wages in the non-tradable sector are determined within the model. To identify wages in

the non-tradable sector, we use the values of Am and ωm, and equation (3.14).

Existence and uniqueness of exogenous components of amenities and productivity.
The last result shows that there are unique vectors of parameters that determine local
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amenities that are consistent with observed data and unobserved skill and occupation

shares.

LemmaC.5. Given theparameters

{
ε, κ, τ, α, ζs

m, ν
s
m, ς

s
m
}
, observables

{
NWm,NRm,q,p, t, ŵs

G

}
,

employment amenities in the tradable sectorEs
G, collegewagepremium in thenon-tradable

sector wH
Sj/w

L
Sj, residential amenities Xs

m, and productivities Am there exist unique vectors

am and xs
m.

Proof. The results follow immediately from equations that determine local productivity

and amenities, (3.25) and (3.26). �

D In focus: New York Metropolitan Area

A closer look at the New York metro area gives us a more concrete idea of how predicted

changes in jobs and residents play out at the intra-city level. In panel A of Figure D.1

we see that there is a large predicted movement of residents out of most of Manhattan,

Brooklyn, and Queens. The Bronx, Staten Island, and isolated locations in Manhattan and

Queens see significant inflows. Counties in New Jersey and Connecticut and outlying

counties in New York state gain residents. This donut-shaped pattern is consistent with

the nationwide patterns we reviewed earlier as well as with migration evidence during

the Covid-19 pandemic (Ramani and Bloom, 2021).

Panel B shows changes in jobs. Downtown and midtown Manhattan, the parts of

Brooklyn, Queens, the Bronx, and New Jersey which are closest to Manhattan, all see

strong job gains. Employment growth in highly productive areas like these is largely

driven by the growth in telecommutable jobs in the tradable sector. The immediate

suburbs to the north of the city see moderate gains, while Long Island and suburbs to the

south see job losses.

On the aggregate, the residential population of the New York CZ does not change but

employment goes up by 2.6%. Job gains exceed population gains because, with more

common remote work, more workers can access the attractive New York’s labor market

without having to live there. These workers tend to live in nearby metro areas where

housing is more affordable. For example, Philadelphia’s residential population grows

slightly, by 0.3%, even though the number of jobs there falls by 0.5%.

As panel C makes clear, workers with telecommutable occupations overwhelmingly

leave central areas and move to peripheral areas–the same pattern we see countrywide.

In panel D, we see workers with non-telecommutable occupations move downtown in

significant numbers, off-setting some of the telecommutable exodus.
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Figure D.1: New York metro area, predicted changes in residents, jobs, and prices

Panel A: Residents Panel B: Jobs

Panel C: Telecommutable residents Panel D: Non-telecommutable residents

Panel E: Non-tradable jobs Panel F: Tradable jobs

Panel G: Floorspace prices Panel H: Non-tradable prices

Note: Themaps show absolute changes in residents and jobs betweeen the benchmark and the counterfactual

economies in panels A to F, and percentage changes in prices in panels G and H.
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In panel E, we see a heavy exodus of tradable industry jobs from nearly all locations

near the center of the city. At the same time, panel F shows strong tradable industry job

gains for downtown, with some losses in peripheral suburbs.

Panel G maps changes in floorspace prices, which are most strongly negative in down-

townManhattan, and positive in many outlying areas. Panel H maps changes in the price

of non-tradables. In outlying areas they mostly increase, which can be interpreted as

indicating that rising demand from more residents overwhelms the cost-lowering effect

of lower floorspace prices. In some of the most central locations the price of non-tradables

falls, indicating that the effect of lower floorspace prices dominates.

E Measuring Welfare Changes

Overall welfare. Our measure of worker’s welfare is Vso
, given by (3.8). Since indirect

utility vso
mij is proportional to optimal composite consumption, w̃so

mijp
−β
i q−γi , the percentage

change in consumption-equivalentwelfare is equal to the percentage change inVso
. To find

the economy-wide change in welfare, we compute the percentage change in the weighted-

average of Vso
, i.e., V ≡

∑
s
∑

o l
soVso

. In our calculations, we adjust the counterfactual

disutility of commuting, dso
mij, to reflect changes in commuting frequencies. But because

we do not take a position on whether the calibrated work-from-home aversion reflects

genuine worker preferences or other kinds of non-pecuniary barriers to remote work, we

do not adjust the changes in ςs
m when computing welfare gains.

Sources of welfare gains. We are interested in the relative roles of changes in con-

sumption, commuting costs, and amenities. To measure the part from consumption only,
we compute

Vso
C

=
∑

m

∑
i

∑
j

πso
mijw̃

so
mijp

−β
i q−γi . (E.1)

The part from consumption and commuting costs is computed as

Vso
CC

=
∑

m

∑
i

∑
j

πso
mijw̃

so
mijp

−β
i q−γi /d

so
mij. (E.2)

Finally, the contribution of consumption, commuting costs, and amenities to welfare is com-

puted as

Vso
CCA

=
∑

m

∑
i

∑
j

πso
mijX

s
miE

s
mjw̃

so
mijp

−β
i q−γi /(gi jdso

mij). (E.3)

The effect of amenities comes both from endogenous changes in residential amenities Xs
mi

and migration to places with different amenities. As in the case of total welfare, we adjust
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dso
mij to reflect changes in commuting frequencies but not in the telework aversion.

Landlord’s income. We do not take a stance on the weight of landlords in the social

welfare function and compare changes in their income alongside changes in workers’

welfare. Landlords’ only income source are proceeds from land sales, and their aggregate

income is ∑
i

ηiqiHi. (E.4)

F Further Discussion of Alternative Counterfactuals

In this section, we study alternative counterfactuals in order to understandwhich channels

are important in driving resident and job reallocations, as well as aggregate changes. We

startwith aworld inwhich the aversion to telecommutingdecreases butworkers areunable

to move and floorspace supply does not change (counterfactual 1). Then we switch on the

reallocationofworkers to newresidences and jobs (counterfactual 2). After that, floorspace

supply adjusts (counterfactual 3). Next, residential amenities adjust (counterfactual 4),

and then local productivity adjusts (counterfactual 5). This last stage brings us all the

way up to our original focus point–the long run with full adjustment. Finally, we run a

counterfactual in which working at home contributes to productive externalities in the

main job site as much as working on site by setting ψ = 1 (counterfactual 6).

Table F.1 reports results for each scenario. In counterfactual (1), we see that averagewel-

fare rises as soon as remote work becomes more accessible, even before workers can move

and floorspace supply can change. However, gains are only experienced by telecom-

mutable workers. These enjoy higher income from a more productive combination of

at-home and on-site time, and less time spent commuting.

In counterfactual (2), when workers are allowed to choose new jobs and residences

but residential and commercial floorspace supply in each location remain the same, non-

telecommutable workers are able to increase their income substantially by moving into

jobs in central locations left behind by remote workers. Non-telecommutable workers

also take advantage of reduced floorspace demand in central areas to move slightly closer

to their jobs, reducing their time spent commuting by 0.4%. We also see a gap emerge

between the income gains of college remote-capable workers, and the gains of their non-

college counterparts. This can be attributed to an industry composition effect: a greater

proportion of collegeworkers are employed in the tradable sector, and are thus able to take

advantage of easier remote work to match with more productive job sites. Non-tradable

employment, however, follows residents to less productive locations, as evidenced by

the increase in non-tradable prices. This reduces income gains for non-college remote
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Table F.1: Aggregate results, alternative counterfactuals

WFH aversion falls: X X X X X X
Residents and jobs reallocate: – X X X X X

Floorspace adjusts: – – X X X X
Residential amenities adjust: – – – X X X
Labor productivity adjusts: – – – – X X

Telecommuters add to productivity: – – – – – X
(1) (2) (3) (4) (5) (6)

Income, % chg

all workers 4.5 5.8 3.8 3.8 -0.4 3.8

non-college, non-telecommutable 1.3 4.0 0.4 0.5 -6.3 0.5

non-college, telecommutable 8.9 8.4 8.1 8.1 6.9 8.2

college, non-telecommutable 1.7 4.1 0.2 0.1 -7.7 0.0

college, telecommutable 5.4 6.1 5.2 5.1 2.8 5.1

Floorspace prices, % chg

residential 11.0 16.1 1.3 0.8 -1.8 0.4

commercial -8.8 -15.1 – – – –

Non-tradable goods prices, % chg -0.6 1.2 1.9 1.7 2.3 1.6

Average time to work, % chg 0.0 30.5 37.0 37.9 46.8 38.6

Time spent commuting, all workers, % chg -17.0 -18.6 -21.4 -21.2 -25.4 -21.1

Time spent commuting, commuters (θ = 1), % chg 0.0 -0.4 -0.5 -0.2 -0.5 0.2

Distance traveled, all workers, % chg -17.3 -19.0 -21.9 -21.4 -25.9 -21.1

Average WFH days/week, chg 0.6 0.8 0.9 0.9 1.1 0.9

Welfare, % chg

all workers 8.8 10.8 14.1 14.2 12.7 14.4

non-college, non-telecommutable -0.6 -0.3 -0.6 -0.6 -6.9 -0.5

non-college, telecommutable 23.4 28.6 36.8 37.2 41.5 37.6

college, non-telecommutable -0.4 0.0 -0.7 -0.8 -8.0 -0.8

college, telecommutable 12.2 14.1 19.9 20.0 22.5 20.1

Landlord income, % chg 18.2 29.7 3.6 3.4 -0.8 3.3

due to change in demand 18.5 31.4 4.0 4.1 -0.1 4.0

due to reallocation to low ηi -0.3 -1.7 -0.5 -0.7 -0.7 -0.8

Note: Columns (1)–(6) present results from counterfactuals with different margins of adjustment turned

on, as specified in the header of the table. Welfare changes in columns (2)–(6) are measured as changes in

expected utility (equation 3.8). Since in the first counterfactual workers cannot move, welfare changes in

column (1) are measured as changes in the utility from consumption and commuting.

workers. This counterfactual also leads to the most extreme shifts in floorspace prices of

any of the scenarios we consider–under-utilized, centrally located commercial floorspace

faces deep price cuts, while surging demand for residential floorspace drives steep price

increases.68

68We are able to distinguish between commercial and residential prices because in this counterfactual

floorspace supply of each type is fixed.
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In counterfactual (3), allowing floorspace supply to adjust sharply cuts income gains by

non-telecommutable workers, as center-city offices are downsized and more employment

shifts to less central locations. This also brings double-digit shifts in floorspace prices

and land income down to a 1.3% and a 3.6% increase, respectively. The main impact of

allowing residential amenities adjust in counterfactual (4) is to cause non-telecommutable

workers to choose residences that are slightly farther away from their jobs, as some of the

amenities have now followed remote workers out to the suburbs.

In counterfactual (5), our main counterfactual that we discuss in Section 5, we see

the impact of reduced agglomeration externalities from having workers out of the office.

Income gains are cut across the board, in each category of worker. Among the six counter-

factuals, this one is the only one where non-telecommutable workers experience income

losses as a result of negative productivity externalities from less work done in person.

In counterfactual (6) working at home contributes to productive externalities in the

main job site as much as working on site (ψ = 1). This could happen if remote interaction

technology advances to the point that it can fully simulate the experience of being co-

located with one’s collaborators thus eliminating any disadvantage remote work has in

sparking spontaneous spillovers.69 Comparing columns (6) and (4) of Table F.1, we can see

that income losses from reduced productivity are neatly reversed under this alternative

assumption.

The top three panels in Figure F.1 plot reallocations of residents across counterfactuals

(2) through (6). Obviously, in the first counterfactual, there is no reallocation of residents.

Panel (a) shows the overall reallocation. Here, we see that each step accentuates the initial

pattern–a netmovement of residents fromdenser to less dense locations. Panels (b) and (c)

break this down by occupation type, and reveal a heterogeneous pattern. Forworkerswho

canwork fromhome in panel (c), things look similar to the overall average–each successive

step accentuates reallocation from center to periphery. For workers who cannot work

from home, in panel (b), the opposite happens–the reallocation from periphery to center

is strongest in the second and third counterfactuals. In the fourth and fifth counterfactuals

the reallocation into the city is smaller, as the telecommuting workers end up carrying a

part of the city’s amenities out with them. Finally, in the sixth counterfactual, increased

productivity in the periphery draws additional non-telecommutable workers out. In this

scenario, non-telecommutable workers move out of medium-density locations, into both

peripheral and central locations.

The bottom three panels in Figure F.1 show reallocations of jobs across the second

through sixth counterfactuals. As with residents, each successive step accentuates the

69The “holodeck” from Star Trek: The Next Generation also comes to mind.
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Figure F.1: Changes in residents and jobs, counterfactuals (2)–(6)

Panel (a): all workers Panel (b): non-telecommutable Panel (c): telecommutable
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Panel (d): all workers Panel (e): non-tradable Panel (f): tradable
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Note: This figure shows the relationship between residential density rank ofmodel locations and counterfac-

tual change in resident density (panels a, b, and c) and job density (panels d, e, and f). Panel a shows changes

for all residents, panel b shows changes for non-telecommutable residents, and panel c shows changes for

telecommutable residents. Panel d shows changes for all jobs, panel e shows changes for non-tradable jobs,

and panel f shows changes for tradable jobs. The scatterplot in blue shows individual datapoints, and black

and gray markers plot averages by ventile: i.e. below the 5
th
percentile, from the 5

th
to the 10

th
, and so on.

main pattern of reallocation towards less dense locations. Glancing at panel (e), it is clear

this is mostly driven by non-tradable sector jobs following the movement of residents.

Looking at panel (f), it is interesting to note that the variations between counterfactuals

(2), (3), (4), and (5) have very little effect on the reallocation of tradable jobs. Reallocations

of labor in the tradable sector are driven by the broadening of the labor market which is

already fully operative by counterfactual (2). In counterfactual (6), however, less-dense

locations see a significant jump in competitiveness, as remote workers begin contributing

to local TFP.
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Table G.1: Work from home productivity parameters

Parameter Description Benchmark Counterfactual % change

Productivity of remote work:

νL
S non-college, non-tradable 0.9929 2.0416 105.62%

νL
G non-college, tradable 0.9961 1.9828 99.06%

νH
S college, non-tradable 0.9896 1.5402 55.63%

νH
G college, tradable 0.9990 1.7845 78.63%

Note: The table shows calibrated values of the work from home productivity parameters in the benchmark

and the counterfactual economy where the entire increase in work from home is driven by an increase in

remote work productivity.

G Counterfactual: Increased Productivity of Remote Work

In this section we consider a counterfactual in which increased working from home is

due solely to increased productivity, rather than due to a combination of an increased

productivity and changes in preferences as in the baseline counterfactual.70 While many

of the patterns are similar to those seen in the baseline, it produces unrealistic increases

in the wages of telecommuters and gigantic welfare gains. Table G.1 reports the changes

in productivity of work from home required to attain the predicted increase in work from

home frequency. The productivity of remote work must go up by 56–106% depending on

the type of worker.

Distributions of residents and jobs. Figure G.1 shows changes in residents and jobs.

Comparing it with Figures 6 and 7, we can see that the overall patterns are similar. The

main driving force for the shifts in residents and jobs is greater attractiveness of work

from home, whether due to lower aversion to it or due to its higher productivity. The only

notable difference is that in this counterfactual relocations to the least dense locations are

much smaller. This is because incomes of those who can telecommute skyrocket, as we

will see in Table G.2 and a small number of high-income remote workers bid out others

as they move to the most remote locations.

Aggregate results and welfare effects. Table G.2 reports aggregate results from this

counterfactual. Comparingwith Table 8, we can see that changes in aggregate commuting

behavior are similar. This is not surprising, as the same changes in average telecommuting

frequencies are targeted in the calibration. However, the predictions for changes in income

are very different. An average worker earns 36% more, with the increase driven entirely

by telecommutable workers. Among these, college workers earn 47% more, while non-

70In Appendix Section H.4, we also discuss a counterfactual where work from home increases due to a

change in preferences only and productivity of remote work does not change.
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Figure G.1: Changes in Residents and Employmnet

Panel A: All residents, model locations Panel B: All residents, CZs

01000200030004000

Benchmark log residential density, rank

-0.4

-0.2

0

0.2

0.4

C
ou

nt
er

fa
ct

ua
l c

ha
ng

e

Log residential density

0100200300400500600700

Benchmark log number of residents, rank

-0.2

-0.1

0

0.1

0.2

0.3

0.4

C
ou

nt
er

fa
ct

ua
l c

ha
ng

e

Log number of residents

  

 

 
 

 

 

 

 

 
  

 
 

 

 

 

 

 

 

  
  

 

  
 

 

 

 

 
 

 

 

 

 

 

 

 

 

  
  

 

 

 

 
 

 
  

 

 

 

 

 
 

 

 

 

 

  

 

 

 

   
 

 
 

  

 

  

 

 
 

 

 

 

  
 

 

  
  

 

 

 

 
 

 

 

 
   

 
 

  

 

 
 

 

 

 

  
 

 

 
 

 

 

 
  

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

   

 

  
 

 

 

 
 

 

 

 

 

 

 

 

   

 

 

 
 

 
 

 

 

 

 
 

 

 

 
 

 

 

 
 

 

  

 

 

 

 

 
 

 

 

 

 
   

 

 

 
 

 
 

  
 

 

 
   

 

 

   

 
 

 

 
 

 
 

 

 

 
 

 
 

 

 

 

 

 
 

 

 

 
 

 

 

 

 
 

 
 

 

 

 

 
 

 
 

 

 
 

 

 
 

 

 
  

 

 
  

  

 

 

 

 
 

 

  

 

 

 

 
 

 

 

 

 
 

 

 

 

 
  
 

 

 

   

 

 

 

 

  
 

 

 

 

  

 

 
  

 

  
 

 

 

 
 

 

 
 

  

 

 
 

 
 

 

 

  

 

 

 
 

 

 

  
   

 
  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

 
 

 
 

 
  

  
 
  

  

 

 

 

  

 

  

 

 

  

 

 

 

 
 
 

 
 

 

 
 

 
 

 

 

  

 

 

 

 

 

 

 

 

 

 

 
   

 

 

 

  
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 
 

 

 

 

 

 
  

 

  
  

 

 
 

 

 

 

 
 

 
 

 
 

  

 

  

 

 

 

  

 
 

 

 

  

 

 

 
 

 

 
 

 

 

 
 

  

 

 

 

 
 

  

 
 

 

 

  

   

 

 

 

 

 

 

 
 

 

 

  

 
 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 
  

  

 

  
 

  

 
 

 

 

 

 

 

 

  

 
 

 

 

   

 

 
 

  

 

 

  

 

 

  
 

 

 

   
  
 

 

 

 
   

 

 

 
 

 

  
 

 

 
 

 
 

 

 

 
 

 

 
 

 

 

 

 

  

 

 
 

 

 

 

  

 

 

 

 
  

 
 

 

 

 

 
  

 

 

 

 

 

 

 

  

  

 

  

 
 

 

 
 

 

 

 

 

 

 

  

 
 

  

 

  

 

 

 

 

  

  
 

 
 

 

 

 

 

Panel C: All jobs, model locations Panel D: All jobs, CZs
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Note: PanelA shows the relationship between residential density rank formodel locations and counterfactual

change in log residential density. Panel B shows the relationship between total resident rank for CZs and

the counterfactual change in log total residents. Panels C and D repeat the analysis for changes in jobs.

Scatterplots in gray show individual model locations orMSAs, while diamonds or circles represent averages

by ventile: i.e. below the 5
th
percentile, from the 5

th
to the 10

th
, etc.

college workers earn 88% more. We find it hard to call the prediction of such increases in

the wages of telecommutable professions, due solely to technological changes in the year

or so after March 2020, anything but very unrealistic.

Evidence during 2019–2023. Finally, we compare this counterfactual’s predictions

about reallocations of residents and changes in rentswith observedmigration and changes

in housing rents and prices between 2019 and 2023, as we did in Section 5.5. Comparing

Table G.3 with Table 7, we see that the predictions of both models are quite comparable.
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Table G.2: Aggregate results

non-college college

all

workers

all non-

tel.

tel. all non-

tel.

tel.

Average time to work, % chg 54.5 55.6 -1.3 119.2 52.0 -1.3 66.2

Time spent commuting, % chg -24.3 -22.7 -1.3 -56.6 -28.8 -1.3 -40.8

Average WFH days/week, chg 1.1 1.1 – 2.6 1.3 – 2.6

Income, % chg 35.5 35.9 -2.3 87.5 34.8 -1.4 46.6

Floorspace prices, % chg 17.6 18.0 19.2 16.2 16.8 17.9 16.4

Non-tradables prices, % chg 7.4 7.4 7.5 7.4 7.3 7.4 7.3

Welfare, % chg

consumption only 24.2 24.5 -11.1 72.1 23.7 -9.9 34.5

+ commuting 21.5 21.0 -10.6 65.0 22.3 -9.4 32.9

+ amenities 21.4 21.1 -8.0 61.5 21.8 -4.7 30.8

total welfare 45.8 41.9 -10.0 134.5 57.3 -8.8 64.5

Note: The table shows results of the counterfactual exercise in which the rise of telecommuting is driven by

an increase in the productivity of work from home, as described in the text. “tel.” refers to telecommutable

workers, and “non-tel.” to non-telecommutable workers. Price changes refer to the change in the average

price faced by a member of the indicated group of workers.

H Robustness

H.1 No Penalty for Living Far from Job Site

One of the innovations of our framework is the penalty for living far from the job site that

applies regardless of the frequency of commuting, gi j. How different would our results

be if we excluded gi j from the location choice problem?

To answer this question, we recalibrate our model by imposing τ = 0 which implies

that gi j = 1 for all location pairs. Without the penalty, those workers who commute very

infrequently are almost completely untethered from their job sites and can live virtually

anywhere, contrary to the evidence on the locations of telecommuters that constitutes

stylized fact #4 in Section 2. Column 2 of Table H.1 shows that all changes that we observed

in our main counterfactual exercise (column 1) are greatly amplified: telecommutable

workers relocate farther from job sites and their welfare gains aremuchmore pronounced.
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Table G.3: Changes from 2019 to 2023, model vs. data

Panel A: Residents

(1) (2) (3) (4) (5) (6)

Log chg residents, model 0.147 0.139 0.0644 -0.0399 0.230 0.238

(0.0292) (0.0370) (0.0395) (0.0498) (0.0709) (0.0761)

Level of obs. ML ML ML ML CZ CZ

Density control no yes no yes no yes

CZ fixed effects no no yes yes – –

Observations 4502 4502 4453 4453 723 723

R-squared 0.00557 0.00560 0.383 0.385 0.0144 0.0145

Panel B: House rents

(1) (2) (3) (4) (5) (6)

Log chg prices, model 0.486 0.226 0.568 0.497 -2.044 -1.998

(0.0831) (0.0926) (0.0821) (0.0979) (1.005) (1.245)

Level of obs. ML ML ML ML CZ CZ

Density control no yes no yes no yes

CZ fixed effects no no yes yes – –

Observations 1334 1334 1293 1293 172 172

R-squared 0.0250 0.0510 0.492 0.493 0.0238 0.0238

Note: In panelA, thedependent variable is the log change in residents betweenDecember 2019 andDecember

2023 constructed from the ACS. In panel B, the dependent variable is the log change in house rents between

December 2019 and December 2023 constructed from Zillow. Standard errors are in parentheses. The

regressions are estimated at the level of model locations (“ML”), with or without CZ fixed effects, or at the

level of CZs (“CZ”). Regressions at the model location level with CZ fixed effects have fewer observations

because some CZs correspond to model locations. *, **, and *** indicate 10%, 5%, and 1% significance levels.

H.2 Equal Reduction in Work-from-Home Aversion

In ourmain counterfactual, we calibrated somewhat larger reductions inwork-from-home

aversion for non-collegeworkers. This gives this groupofworkers a boost to counterfactual

welfare gains. How sensitive are our results to the differences in calibrated changes in

dislike for telework?

We recalibrate the post-Covid economy so that the aggregate reduction in work-from-

home aversion is the same for all workers in all industries by targeting the overall, not

education-industry specific, increase in work from home. The calibrated fall in the work

from home aversion parameter, ςs
m, is 46% for all types of workers. Column 3 of Table H.1

compares the results of this counterfactual to themain counterfactual (column 1). Overall,

the results are quite similar. The welfare gains of telecommutable college graduates

become larger and the losses of non-telecommutable college graduates become smaller.

At the same time, for non-college graduates the gains turn smaller. This implies that the
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Table H.1: Aggregate results, robustness counterfactuals

(1) (2) (3) (4) (5)

Main

CF

τ = 0 Same

chg ςs
m

Same

ηi

Fixed

νs
m

Income, % chg

all workers -0.4 -2.4 1.0 -1.0 1.3

non-college, non-telecommutable -6.3 -4.8 -2.0 -6.1 -1.7

non-college, telecommutable 6.9 1.2 5.2 5.6 5.2

college, non-telecommutable -7.7 -6.2 -2.7 -8.2 -2.4

college, telecommutable 2.8 -1.2 2.0 1.6 2.7

Floorspace prices, % chg

residential -1.8 -3.9 -1.4 1.5 -1.0

commercial -1.8 -3.9 -1.4 1.5 -1.0

Non-tradable goods prices, % chg 2.3 3.1 1.7 2.0 2.1

Average time to work, % chg 46.8 240.5 44.7 50.7 45.3

Time spent commuting, all workers, % chg -25.4 -24.3 -25.2 -25.2 -25.4

Time spent commuting, commuters (θ = 1), % chg -0.5 -0.3 -0.2 0.0 -0.3

Distance traveled, all workers, % chg -25.9 -25.8 -25.3 -24.8 -25.7

Average WFH days/week, chg 1.1 1.1 1.1 1.1 1.1

Welfare, % chg

all workers 12.7 61.5 14.0 14.1 13.9

non-college, non-telecommutable -6.9 -6.1 -2.6 -5.5 -2.6

non-college, telecommutable 41.5 130.0 33.3 43.8 38.3

college, non-telecommutable -8.0 -7.1 -2.7 -8.2 -2.9

college, telecommutable 22.5 69.3 28.2 22.9 21.7

Landlord income, % chg -0.8 -3.3 0.5 -48.1 0.9

due to change in demand -0.1 -2.2 1.2 -48.1 1.6

due to reallocation to low ηi -0.7 -1.2 -0.7 0.0 -0.7

Note: The table reports results of several alternative counterfactuals, as described in the text.

gap in welfare gains between college and non-college workers would be even greater if

we assumed the same reduction in work from home aversion for all worker types.

H.3 Equal Floorspace Supply Elasticities

In our quantitative model, we use estimates of floorspace supply elasticities from Baum-

Snow and Han (2021). To our knowledge, these are the only estimates at a sufficiently

high level of resolution (Census tracts) that can be applied to our model locations. At the

same time, these elasticities are significantly lower than those estimated in prior literature

(see the discussion in Section 4.2.3).
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To evaluate the sensitivity of our results to these elasticities, we re-calibrate the model

by assigning the elasticity of 1.75 (this corresponds to ηi = 0.36), as estimated in Saiz (2010),

to all model locations. Column 4 of TableH.1 compares the results of this counterfactual to

themain counterfactual (column1). Most results are quite close to themain counterfactual,

which suggests that our predictions are robust to our choice of housing supply elasticities.

H.4 No Increase in Productivity of Remote Work

Our counterfactual results depend, to some extent, on the calibrated increase of the relative

productivity of remote work. While in the benchmark economy, on-site and remote work

are nearly equally productive, in the counterfactual remotework is 7–10%more productive

(see Table 4). This means that telecommutable workers can increase their income simply

by working from home more often. To understand the role of the increase in work

from home productivity, we fix νs
m at its benchmark level for all types, and rerun the

main counterfactual. The results in column 5 of Table H.1 show that, if remote work

productivity does not improve, then the income of those who can work from home does

not go up as much, but also the income of those who cannot falls by much less. This

is because non-telecommutable workers with the same education working in the same

industry are better positioned to compete with their telecommutable counterparts. In this

scenario, average welfare gains are slightly larger and the gaps in gains between different

worker types are smaller.

I Sectoral Specialization of Cities

One dimension in which cities may diverge is their sectoral specialization. As we saw

in Figure 1, work from home is more common in tradable industries. Thus, cities that

specialize in tradable output can increase their degree of specialization by being able to

hire workers from a broader radius. Indeed, Figure I.1 shows that CZs that have a larger

employment share in the tradable sector add more tradable jobs in the counterfactual

economy.
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Figure I.1: Divergence in sectoral specialization

0.1 0.2 0.3 0.4 0.5 0.6

Share of jobs in tradable sector, benchmark

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

C
ha

ng
e,

 c
ou

nt
er

fa
ct

ua
l

Slope: 0.12 (0.012)

Note: The figure shows the relationship between shares of jobs at the CZ level in the benchmark economy and

change in the shares in the counterfactual. Circle size is proportional to CZ population in the benchmark.

The legend shows best-fit slope coefficients and their standard errors.
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J Additional Figures, Tables, and Maps

Figure J.1: Density of residents

Panel (a): absolute changes

Panel (b): relative changes

Note: Panel (a) shows absolute changes in the number of residents per square kilometer in each model

location in the main counterfactual where the aversion for work from home falls and all endogenous

variables adjust. Panel (b) shows percentage changes.
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Figure J.2: Density of jobs

Panel (a): absolute changes

Panel (b): relative changes

Note: Panel (a) shows absolute changes in the number of jobs per square kilometer in each model location in

the main counterfactual where the aversion for work from home falls and all endogenous variables adjust.

Panel (b) shows percentage changes.
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Figure J.3: Floorspace prices, percentage changes

Note: The map shows percentage changes in the price of floorspace in the main counterfactual where the

aversion for work from home falls and all endogenous variables adjust.

Figure J.4: Change in residents, jobs, and floorspace prices in top-10 largest CZs

Panel A: Residents Panel B: Jobs Panel C: Floorspace prices
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Note: Panel A shows the relationship between the change in the log number of residents of a model location

in the main counterfactual and the location’s distance to the center for top-10 largest CZs. Panels B and C

repeat the analysis for jobs and floorspace prices. Center of a CZ is defined as the location of the city hall of

the largest municipality in the CZ.
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