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Abstract

We develop a dynamic urban model combining features of quantitative spatial and
macro-housing models. It includes multiple locations, forward-looking households,
commuting, costly migration, uninsurable income risk, housing tenure choice, and
housing frictions. The model operates in continuous time, with shocks and choices
occurring at discrete intervals. This “mixed time” approach enables efficient computa-
tion of steady-state equilibria and transition dynamics, even with thousands of location
pairs. Using a model of the San Francisco Bay Area, we show how forward-looking be-
havior, spatial frictions, and transition dynamics reshape estimated effects of spatially
heterogeneous shocks and policies, traditionally studied with static models.
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1 Introduction

The effects of shocks and policies are often unevenly felt across time and space. Since
moving is costly and investment in local assets such as housing is widespread, individual
welfare effects depend on where people live and work. Therefore, understanding the
aggregate and distributional consequences of such shocks and policies requires accounting
for geography, moving frictions, and real estate ownership.

The state of the art for analyzing spatially heterogeneous shocks is the quantitative
spatial model (QSM) developed by Ahlfeldt, Redding, Sturm and Wolf (2015) and extended
in numerous subsequent studies. It has rich geography and some heterogeneity across
agents, but is static. While it has been successful in capturing relevant aspects of economic
geography, the abstraction from dynamics obscures several important issues.

First, static models are poorly suited to calculate individual welfare effects. The dis-
tributional effects of a shock are often at least as important as its aggregate impacts, but
correctly estimating these requires accounting for transition dynamics. Second, the effects
of a shock may be different in the short versus long run. Dynamics are also needed to
account for the time horizon of policymakers. The first-best policy implied by a static
analysis may be infeasible if voters and politicians only support projects that yield rapid
benefits. Third, comparative statics ignore history dependence. For historical reasons,
there may be a large concentration of economic activity in a location that appears un-
desirable through the lens of a static model. However, since structures are durable and
migration is costly, it may be suboptimal to encourage reallocation. Fourth, welfare ef-
fects depend on the risks and intertemporal choices households face. People desire to
live where they can achieve their preferred tenure and saving, and insure against risk.
Welfare effects also depend on real estate ownership. Since real estate investment is a
forward-looking decision, a dynamic model is required to properly account for it.

Dynamic models with risk are standard in other fields of economics. For example,
macroeconomic models with housing have many of the ingredients needed to study the
effects of local shocks and policies. However, they do not account for realistic geography.

In this paper, we build a bridge between static QSMs from urban economics and
dynamic macro-housing models. Our model contains a large number of locations, each
of which can serve as a residence for some households and a work place for others.
Forward-looking households choose their locations of residence and work, taking into
account commuting times, amenities, wages, and housing costs. Moving frictions imply
that location choices are dynamic. As is standard in macro-housing models, households
are finitely-lived, face idiosyncratic income risk, can borrow and save in a risk-free asset,
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and choose whether to rent or own housing. Owner-occupied housing is illiquid and
requires a downpayment, and homeowners can borrow against their housing wealth
subject to a collateral constraint. These ingredients allow us to match key features of
homeownership and housing wealth data, as well as capture the welfare effects of house
price changes. On the production side, developers in each location build residential
and commercial floorspace. Residential floorspace is consumed by households, while
commercial floorspace together with labor is used by local firms to produce a traded
good. Floorspace rents and prices, as well as wages in every location, are determined in
general equilibrium.

While this model is well-suited to analyze spatially heterogeneous shocks and policies,
solving it presents several major computational challenges. First, allowing for hetero-
geneity by age, wealth, illiquid housing, productivity, residence, and workplace implies
a large state space. In an urban environment with commuting, the state space increases
quadratically with the number of locations. For example, a city with 50 neighborhoods has
2,500 location pairs, each with its own age-wealth-housing-productivity distribution. The
state space is even larger when we account for transition dynamics, where time becomes
a state variable. Second, as is standard in quantitative urban models, we have to estimate
residential and workplace amenities as well as productivities for every location in order
to match observed populations, employments, wages, and floorspace prices. As a result,
even for a city with a modest number of locations, there are hundreds of parameters to
estimate. Finally, housing transaction costs imply that agents face a stopping time problem
of when to adjust tenure or house size. This induces kinks in the value function, which
complicates computation because the first order conditions are not sufficient.

The first contribution of this paper is to show how these obstacles can be overcome
using recent tools from macroeconomics and quantitative urban economics. The key to
tractability is to cast the model in continuous time, but only allow shocks and discrete
choices to occur at discrete, deterministic time intervals. We refer to this assumption,
which builds on Greaney (2023), as “mixed time.” At discrete instances, which we call
“shock ages,” households draw idiosyncratic productivity, residence, and workplace pref-
erence shocks. They then make discrete choices: residence, workplace, tenure, and owner-
occupied house size. Between shock ages, location and owner-occupied housing are fixed,
and the agent’s problem reduces to a simple consumption-saving choice.

Separating the timing of discrete versus continuous choices allows us to take ad-
vantage of efficient discrete- and continuous-time solution methods. As in quantitative
urban models, we assume that location preferences are drawn from an extreme-value
distribution, which yields closed-form solutions for value functions and location choice
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probabilities at shock ages. Crucially, this assumption also allows us to replace work-
place with an alternative state variable, wage, that can be discretized on a grid whose
cardinality is independent of the number of locations. This dramatically reduces the state
space size when there are many locations. Between shock ages, the consumption-saving
choice can be solved efficiently using the continuous-time numerical method developed
by Achdou, Han, Lasry, Lions and Moll (2022). This method handles non-convexities
without difficulty, and, since time is continuous, the first-order conditions are sufficient.

We calibrate our model to the San Francisco Bay Area, which contains 55 locations or
3,025 location pairs. Our algorithm solves a steady-state equilibrium in 20 seconds on
a conventional laptop processor. Importantly, even though the number of location pairs
increases quadratically with the number of locations, our algorithm’s computation time
increases almost linearly. This opens up the possibility of using our method to solve
models with a much larger number of locations.

The second contribution of this paper is to show how accounting for forward-looking
behavior, homeownership, spatial frictions, and transition dynamics changes the esti-
mated effects of spatially heterogeneous shocks and policies. To this end, we use the
quantitative model of the Bay Area to study two types of policy counterfactuals that are
common applications for static QSMs. The first experiment consists of an increase in
housing supply (“upzoning”) in locations with below–median construction productivity.
The second experiment considers a policy that improves the transportation network by
introducing four stations of the planned California High-Speed Rail (HSR). We assume
that the HSR will be used for commuting and recalculate the commuting time matrix for
the entire Bay Area.

The upzoning experiment attracts more residents and jobs to most upzoned areas:
upzoned locations are better places for residents, due to more abundant housing, and for
firms, due to more abundant workers nearby. However, due to migration frictions and
the durability of structures, spatial reallocation is gradual and the full transition takes
about 75 years. The HSR experiment has similar effects on population and employment
in treated locations, but for a different reason: locations with stations improve access of
workers to jobs, as well as access of employers to workers. As in the upzoning experiment,
spatial reallocation is gradual and the transition takes decades to unfold. Moreover, the
HSR has non-monotonic effects on employment in some suburban locations. In the first
few years, greater access to jobs in the rest of the Bay Area leads to a decline in local
employment. But later, as more people move in, local employment partly recovers.

While upzoning improves welfare for the average household, there is a rich distribution
of welfare effects. The gains for renters are much larger than for homeowners, whose
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housing wealth falls as house prices decline. Older, less productive, and less wealthy
homeowners experience sizable welfare losses, as housing accounts for more of their
lifetime wealth. The HSR improves welfare for most individuals, especially those living
near a station (we do not model the costs of constructing the HSR). The gains are larger for
the young, who benefit from better transit for a longer period of time, for homeowners,
who benefit from real estate appreciation near HSR stations, and for the most productive
workers, who gain most from access to better jobs.

We show that sluggish adjustment to shocks, as well as reallocation costs, mean that
welfare gains that account for transition dynamics can be much lower than the gains
calculated from comparing two steady states. For example, not accounting for transitions
overestimates welfare gains from the upzoning policy by over one-half. There is also rich
heterogeneity of impacts across locations, so our results cannot be summarized by a model
with stylized geography.

To demonstrate the importance of accounting for homeownership, we build a version
of our model with renters only who are exposed to real estate shocks via a local real estate
investment trust (REIT). To show the importance of accounting for saving and borrowing
decisions, we also build a model with hand-to-mouth households. We then re-run the
two counterfactual experiments. The distribution of welfare effects is much larger in our
main model. In the upzoning counterfactual, 34% of households experience welfare losses
in our main model compared to close to 0% in the no-homeownership and the hand-to-
mouth models. In the HSR counterfactual, the numbers are 22% compared to 15-16%. In
many locations, over 50% of homeowners experience welfare losses from each policy.

The main reason our model produces a richer distribution of welfare gains is that
owner-occupied housing is a spatially undiversified asset that many households own with
substantial leverage. For many households, this also the largest asset in their portfolios.
Approximating homeownership with a REIT that transfers gains and losses on housing
back to the locals falls short of fully capturing the effects of homeownership.

Our findings help explain why many spatial policies that are welfare-improving for
an average household often face stiff opposition from local residents and do not get
implemented. Our results suggest that urban policy evaluation with a model that abstracts
from forward-looking behavior, transition dynamics, realistic geography, and especially
homeownership would miscalculate effects that are of central interest to policymakers.

Related literature. Our paper is related to the quantitative urban economics litera-
ture and the macro-housing literature.1 The former typically allows for a large number of

1See Redding and Rossi-Hansberg (2017) for a review of the quantitative spatial literature and Davis and
Van Nieuwerburgh (2015) and Piazzesi and Schneider (2016) for reviews of the macro-housing literature.
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neighborhoods and commuting decisions, while abstracting from dynamics. Important
examples include Ahlfeldt, Redding, Sturm and Wolf (2015) and Heblich, Redding and
Sturm (2020). The macro-housing literature has forward-looking agents, housing tenure
choice with realistic constraints and frictions, as well as transitional dynamics, but typi-
cally abstracts from geography. Main contributions include Campbell and Cocco (2007),
Landvoigt, Piazzesi and Schneider (2015), Favilukis, Ludvigson and Van Nieuwerburgh
(2017), Berger, Guerrieri, Lorenzoni and Vavra (2018), and Kaplan, Mitman and Violante
(2020).

Several recent papers have attempted to bridge the gap between the macro-housing
and urban literatures, but have typically done so by imposing restrictive assumptions on
individual choices and constraints or geography. Ortalo-Magné and Prat (2016) study a
problem where households are exposed to local labor income risk and make a once-and-
for-all location choice. Their model solves a rich portfolio choice problem in closed-form,
as in Merton (1969), but does not have preferences that admit wealth effects nor allow for
recurring consumption and location choices. Favilukis, Mabille and Van Nieuwerburgh
(2022) develop a rich macro-housing model to study housing affordability policies, but
their model is limited to three locations (city center, city periphery, and an external loca-
tion). In the quantitative urban tradition, Takeda and Yamagishi (2023) and Warnes (2024)
incorporate dynamics in a model of internal city structure with commuting. However,
they abstract from savings, housing tenure choice, and floorspace construction.

A major challenge is to allow for forward-looking migration and investment decisions
in general equilibrium, since these decisions depend on the choices of all other agents in
all future periods. With a large number of locations, this implies an enormous state space.

To avoid this difficulty, most papers with forward-looking migration abstract from
consumption-saving decisions. Important examples are Artuç, Chaudhuri and McLaren
(2010), Desmet, Nagy and Rossi-Hansberg (2018), Giannone (2019), Caliendo, Dvorkin and
Parro (2019), Eckert and Kleineberg (2021), Zerecero (2021), Martellini (2022), Allen and
Donaldson (2022), and Almagro and Domínguez-Iino (2024). Bilal and Rossi-Hansberg
(2021) allow borrowing and saving, but assume migration is costless, which implies that
location is not a state variable.

Other papers allow for both forward-looking migration and saving decisions, but
assign these decisions to different types of agents. Kleinman, Liu and Redding (2023),
Cai, Caliendo, Parro and Xiang (2022), and Vanhapelto (2022) feature geographically
mobile workers who live hand-to-mouth, and capitalists who accumulate wealth but
cannot move. These models are tractable because the wealth distribution in each location
is degenerate. Dvorkin (2023) extends the approach of Caliendo, Dvorkin and Parro (2019)
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to allow for idiosyncratic risk and saving. As in Merton (1969), he assumes that agents face
multiplicative risk and no borrowing limit, obtaining closed-form solutions for migration
and saving decisions. The key to tractability here is that, although the wealth distribution
is non-degenerate, location and portfolio decisions are independent of wealth.

A few recent papers develop models where agents make both forward-looking location
choices and intertemporal investment decisions that are subject to constraints. Crews
(2023) uses a model in which workers are hand-to-mouth, but invest in human capital
subject to a time constraint. Our model allows households to invest in both a liquid asset
and illiquid owner-occupied housing, but not human capital. More closely related are
Giannone, Li, Paixao and Pang (2023), Greaney (2023), and Luccioletti (2023), who embed
lifecycle housing models in a system-of-cities geography. An important limitation is that
their models become intractable when the number of locations is large.2 This prohibits
their application to settings with commuting, in which the state space depends on the
number of location pairs. Our model not only allows the same agent to make forward-
looking location choices and investment decisions subject to constraints, but also can be
solved efficiently even when there are thousands of location pairs.

Our paper also contributes to the literature that develops computational methods
to solve dynamic spatial models. In particular, our methodological contribution com-
plements that of Bilal (2023). He derives a “Master Equation” that recursively defines
equilibrium in many economies where the distribution of state variables is itself a state
variable, and analytically derives first- and second-order approximations to it.3 In con-
trast to our approach, his method can handle aggregate risk.4 On the other hand, we
highlight two differences between our approaches that make ours more suitable in some
contexts. First, our solution method is global, and so can be used to study arbitrarily
large shocks. This is important in contexts where individual constraints lead to non-linear
effects of shocks. Second, we do not need to assume that policy functions are continu-
ously differentiable with respect to aggregate shocks (see Bilal (2023)’s Assumption 2).
This is important because it allows us to incorporate several realistic housing frictions.
In our model, construction is irreversible, household borrowing limits depend on house
prices, and there are fixed housing adjustment costs.5 Sun (2024) develops a deep learning

2Luccioletti (2023) has 12 locations, Crews (2023) has 34, Giannone, Li, Paixao and Pang (2023) have 27,
and Greaney (2023) has 50.

3Bilal and Rossi-Hansberg (2023) use this approach to study the effects of climate change in a model
with geographically mobile, hand-to-mouth workers and immobile capitalists.

4We require that aggregate uncertainty be resolved within a finite time horizon. There can be uncertainty
about aggregate variables, but the number of future price paths must be finite. See Steinberg (2019) for an
example of a shock which induces aggregate uncertainty over a finite horizon.

5Irreversible construction is necessary to study situations in which the durability of real estate influences
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method to solve a dynamic spatial equilibrium model with a large number of locations.
While his model is cast in discrete time, his approach also leverages the advantages of
separating choices in time and solving them sequentially.

To our knowledge, we are the first to develop a model that combines forward-looking
agents, moving costs, tenure choice, transitional dynamics, and real estate investment into
an internal city structure with commuting. We show that these features are indispens-
able to understand aggregate and distributional effects of shocks and policies that have
differential impact across locations and time.

The remainder of the paper is organized as follows. In Section 2, we describe the
model. In Section 3, we apply the model to the San Francisco Bay Area. In Section 4, we
examine the effects of the transportation and upzoning counterfactuals. Section 5 presents
our conclusions.

2 Model

In this section, we present a dynamic quantitative model of an urban area. The key
ingredients of the model are (1) many locations, each of which can serve as residence and
workplace, (2) commuting between residence and workplace, (3) forward-looking agents,
(4) tenure choice with illiquid owner-occupied housing, and (5) endogenous floorspace
supply, rents, and prices. The model is set in continuous time.

2.1 Households

The economy is populated by a unit mass of finitely-lived households. There are I locations
within a city where households can live and work. A household lives in location i and
works in location j.

2.1.1 Timing

Age is indexed by a ∈ [0,A] and calendar time by t. Households work during ages a ∈
[0,Aret), are retired during ages a ∈ [Aret,A), and die at age A. Both Aret and A are integers.
We separate an individual’s lifetime into “shock ages,” denoted by As

≡ {0, 1, ...,A − 1},
and the rest of the lifespan. As described below, households receive a series of shocks

the effects of negative shocks (Glaeser and Gyourko, 2005). It implies that prices are non-differentiable
functions of aggregate shocks. The collateral limit and fixed adjustment costs imply that household policies
are non-differentiable with respect to aggregate shocks that change house prices.
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Figure 1: Household Decision Timeline

at shock ages, as well as make location and owner-occupied house size choices.6 The
timeline of household decisions is illustrated in Figure 1. The age distribution is uniform.
As a result, at any moment in time there is a constant flow of households reaching shock
ages. Hence the marginal densities of all state variables, both those that adjust between
shock ages and those that only adjust at shock ages, change continuously.

2.1.2 Preferences

Households derive utility from a numeraire consumption good c and housing services h
according to the flow utility function:

u(c,h) =
(c1−ηhη)1−γ

1 − γ
.

They also receive utility from liquid wealth b held at death according to a bequest motive
of the form used by De Nardi (2004):

v(b) = ϑ0
(ϑ1 + b)1−γ

1 − γ
.

Households discount the future at rate ρ.

6This timing assumption is made primarily for computational reasons, discussed in Section 2.5. In the
quantitative model that we describe in Section 3, the interval between shock ages is one year.
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2.1.3 Earnings

Working-age households supply one unit of labor inelastically. The log of their individual
labor productivity z contains both an idiosyncratic component ζ and a lifecycle component
z(a):

z(ζ, a) = ζ + z(a).

The idiosyncratic component ζ follows the AR(1) process:

ζa+1 = θzζa + ϵz with ϵz ∼ N(0, σ2
z),

where innovations ϵz are drawn by working-age individuals at shock ages.
Earnings are ez(ζ,a)w jt, where w jt is the wage in location j at time t. Retirees receive a

pension benefit ♭. Earnings are subject to a payroll tax of rate τz. Payroll tax revenues
go toward social security transfers and wasteful government spending. Thus, individual
after-tax earnings are characterized by:

yt( j, ζ, a) = 1(a < Aret)(1 − τz)ez(ζ,a)w jt + 1(a ≥ Aret)♭. (2.1)

2.1.4 Mobility

Households are only allowed to change their location of residence at shock ages. Im-
mediately after observing their labor productivity ζ, households draw an idiosyncratic
preference shock for each residential location ϵR

i from a Gumbel distribution with scale
parameter νR. After observing these shocks, they choose their residential location. When
changing residential location from i to i′, they incur moving cost µii′(a) that depends on
age. Households in residential location i enjoy a residential amenity ER

i . Idiosyncratic
location preferences, moving costs, and amenities are expressed in utils.

2.1.5 Housing

Housing services can be obtained either by renting or owning. Households can only
consume housing in their location of residence. Rental house size hr is restricted to the
setHr, and owner-occupied house size h is restricted to the setH. The housing services
enjoyed by a household with rental housing hr and owner-occupied housing h are:

h(h, hr) ≡ χh + hr.
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Housing services per unit vary between rented and owner-occupied housing, and the
parameter χ captures the non-pecuniary benefits of ownership. Renting and owning
simultaneously is prohibited: owners must have hr = 0 and renters must have h = 0.

Housing is non-tradable across space, so its price varies across locations. Rental prices
are denoted by rit and owner-occupied house prices by pit. Housing depreciates at rate δ
and owner-occupied housing is subject to a proportional property tax of rate τh. Rental
housing size can be adjusted freely at any time, while owner-occupied housing can only
be adjusted at shock ages. In addition, if a household sells its owner-occupied house, it
must pay a fraction ψ of the value of the house in transaction costs. A homeowner who
changes residential location must first sell any owner-occupied housing, thereby incurring
the transaction cost in addition to the moving cost.

2.1.6 Workplace

Households are allowed to change their work location at shock ages. After choosing
residential location and owner-occupied housing, working-age households draw idiosyn-
cratic preference shocks for each workplace location ϵW

j from a Gumbel distribution with
scale parameter νW. After observing these shocks, they choose their work location. Work-
ers who commute from i to j incur a commuting cost di j. Workers who choose work
location j enjoy a workplace amenity EW

j . Workplace location preferences, commuting
costs, and amenities are expressed in utils.

2.1.7 Budget Constraint and Household Portfolio

Households have access to three liquid, risk-free assets: a bond, a residential real estate
investment trust (REIT), and a commercial REIT. All liquid assets have (ex-ante) return q,
so households are indifferent how their total liquid wealth b is divided among them.7 We
assume that households invest fractions f S and f C of their liquid assets in the residential
and commercial REIT, respectively, and hold the remainder of their liquid wealth in the
bond.8 The interest rate q is set externally.

Whenever households purchase a house, they must satisfy a collateral constraint which
prohibits borrowing more than a fraction ϕ of housing wealth:

b ≥ −ϕpith. (2.2)

7REITs are described in Section 2.3. While households always believe that the return on liquid assets will
be q with probability 1, an unexpected shock can cause REITs to experience unforeseen capital gains/losses.

8For households with non-positive liquid wealth, i.e., b ≤ 0, f S = 0 and f C = 0.
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Between home purchases, if liquid wealth is ever less than or equal to −ϕpith, additional
borrowing is prohibited:

ḃ ≥ 0 if b ≤ −ϕpith. (2.3)

The constraint (2.2) ensures that the loan-to-value (LTV) ratio never exceeds ϕ at origina-
tion. If house prices in a location fall, we do not require homeowners who remain in their
home to delever to meet the origination LTV limit. However, homeowners can only take
on additional debt if their LTV ratio is below ϕ. Note that (2.2) and (2.3) imply that renters
are not allowed to borrow.9

Between shock ages, liquid wealth evolves according to the budget constraint

ḃ = yt( j, ζ, a) + qb − c − rithr
− (δ + τh)pith. (2.4)

At shock ages, liquid wealth changes discontinuously for homeowners who change resi-
dential location and/or households who adjust owner-occupied house size. Immediately
after choosing residential location i′, the liquid wealth and owner-occupied housing of a
household with initial states (b, h, i) are:

b̃R
t (b, h, i; i′) = b + 1(i′ , i)(1 − ψ)pith,

h̃R(h, i; i′) = 1(i′ = i)h.

After choosing residential location, the household chooses owner-occupied housing.
Immediately after adjusting owner-occupied house size to h′, the liquid wealth of a house-
hold with state (b, h, i) is:

b̃H
t (b, h, i; h′) = b + 1(h′ , h)[(1 − ψ)pith − pith′].

Since the collateral constraint must be satisfied after adjusting house size, the set of
permissible owner-occupied house sizes for a household with state (b, h, i) is

Ht(b, h, i) ≡ {h′ ∈H : b̃H
t (b, h, i; h′) ≥ −ϕpith′}.

Finally, liquid wealth can change discontinuously at the time of an unexpected shock
due to REIT capital gains or losses. Let v̂m denote the proportional change in the sector-m

9Our framework can accommodate unsecured borrowing without difficulty. We abstract from it in our
baseline model for expositional clarity.
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REIT value. Liquid wealth after the shock for a household with liquid wealth b is:

b̃S(b) = b +
∑

m∈{S,C}

(v̂m
− 1) f m max{b, 0}.

2.1.8 Household’s Value Function

The household’s state variables are liquid wealth b, owner-occupied house size h, residen-
tial location i, labor productivity ζ, workplace j (for working-age households), and age a.
We denote the vector of state variables by Ω ≡ (b, h, i, ζ, j, a). Note that since workplace is
freely chosen at shock ages, j is not a state variable at shock ages.

Since the bequest motive depends only on liquid wealth, households optimally sell any
owner-occupied housing at death. The value function at the maximum age A is:

Vt(b, h, i, ζ,A) = v(b + (1 − ψ)pith).

Between shock ages, the value function satisfies the Hamilton-Jacobi-Bellman (HJB) equa-
tion:

ρVt(Ω) =max
c,hr

u(c,h(h, hr)) + ∂bVt(Ω)ḃt(Ω, c, hr) + ∂aVt(Ω) + ∂tVt(Ω) (2.5)

s.t. ḃt(Ω, c, hr) ≥ 0 if b ≤ −ϕpith, and hr = 0 if h > 0.

The first term of the right-hand side of (2.5) is flow utility. The second term captures
changes in indirect utility caused by changes in liquid wealth. The final two terms reflect
changes in the value function due to aging and the passage of time, respectively.

The value function at shock ages can be characterized recursively as follows. The
final decision that shock-age households make is work location. Using properties of the
Gumbel distribution, the expected value of the optimal workplace choice for a household
with state Ω is:

VW
t (Ω) = lim

ι↓0

ν
W log

(∑
j exp([Vt+ι(b, h, i, ζ, j, a + ι) + EW

j − di j]/νW)
)

if a < Aret,

Vt+ι(b, h, i, ζ, a + ι) otherwise.
(2.6)

Prior to selecting work location, households choose owner-occupied housing h. The value
of the optimal owner-occupied housing choice for a household with state Ω is:

VH
t (Ω) =VW

t (b̃H
t (Ω; h̃t(Ω)), h̃t(Ω), i, ζ, a), (2.7)
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where h̃t(Ω) = argmaxh′∈Ht(Ω)V
W
t (b̃H

t (Ω; h′), h′, i, ζ, a). Before choosing owner-occupied
housing, households draw residential location preferences and choose their residential
location. Homeowners who change residential location sell their house at this time. The
expected value of the optimal residential location choice for a household with state Ω is:

VR
t (Ω) = νR log

∑
i′

exp
(
[VH

t (b̃R
t (Ω; i′), h̃R(Ω; i′), i′, ζ, a) + ER

i′ − µii′(a)]/νR
) . (2.8)

Finally, the value function at shock ages is the expected value after integrating over
idiosyncratic productivity shocks:

Vt(Ω) =


∫

VR
t (b, h, i, ζ′, a) f (ζ′|ζ) dζ′ if a < Aret,

VR
t (Ω) otherwise

(2.9)

where f (ζ′|ζ) is the conditional probability density function of individual productivity ζ′.

2.1.9 Initial Conditions

Initial idiosyncratic labor productivity is drawn from the invariant distribution. House-
holds are born with zero wealth–we assume that bequests are not redistributed to other
households, but leave the economy. Finally, newborn households freely choose their initial
residential and workplace locations after drawing idiosyncratic location preferences.

2.1.10 Density of State Variables

Between shock ages, the density of state variables gt(Ω) satisfies the Kolmogorov Forward
(KF) equation:

∂tgt(Ω) = −∂b[ḃt(Ω)gt(Ω)] − ∂agt(Ω), (2.10)

where ḃt(Ω) is the optimally chosen drift of liquid wealth.
The density of state variables at shock ages can be characterized as follows. The first

shock that households experience is to labor productivity (if of working age). Immediately
after productivity shocks have occurred, the density of state variables is:

gz
t (Ω) =


∑

j

∫
limι↓0 gt−ι(b, h, i, ζ′, j, a − ι) f (ζ|ζ′) dζ′ if a < Aret,

limι↓0 gt−ι(b, h, i, ζ, a − ι) if a ≥ Aret.
(2.11)

The households then choose their residential location. The density of state variables
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after residential locations are chosen is:

gR
t (Ω) =

∑
i′

∫ ∫
1R

t (b′, h′, i′; b, h, i)πR
t (b′, h′, i′, ζ, a; i) gz

t (b
′, h′, i′, ζ, a) db′dh′, (2.12)

where
1R

t (b, h, i; b′, h′, i′) ≡ 1(b̃R
t (b, h, i, i′) = b′ and h̃R(h, i, i′) = h′)

is an indicator function that is 1 if a household with initial states (b, h, i) has liquid wealth
b′ and owner-occupied housing h′ after selecting residential location i′ and

πR
t (Ω; i′) =

exp([VH
t (b̃R

t (Ω, i′), h̃R(Ω, i′), i′, ζ, a) + ER
i′ − µii′(a)]/νR)∑

i′′ exp([VH
t (b̃R

t (Ω, i′′), h̃R(Ω, i′′), i′′, ζ, a) + ER
i′′ − µii′′(a)]/νR)

(2.13)

is the fraction of households with state Ωwho choose residential location i′.
After choosing residential location, households choose owner-occupied housing. The

density of state variables after housing adjustments have been made is:

gH
t (Ω) =

∫ ∫
1H

t (b′, h′, i, ζ, a; b, h) gR
t (b′, h′, i, ζ, a) db′dh′, (2.14)

where
1H

t (Ω; b′, h′) ≡ 1(b̃H
t (b, h, i, h̃t(Ω)) = b′ and h̃t(Ω) = h′)

is an indicator function that is 1 if a shock-age household with initial state Ω has liquid
wealth b′ and owner-occupied housing h′ after choosing owner-occupied house size.

The final decision that working-age households make is work location. The density of
state variables at shock ages is:

gt(Ω) =

π
W
t (b, h, i, ζ, a; j) gH

t (b, h, i, ζ, a) if a < Aret,

gH
t (Ω) otherwise.

(2.15)

where

πW
t (Ω; j) = lim

ι↓0

exp([Vt+ι(b, h, i, ζ, j, a) + EW
j − di j]/νW)∑

j′ exp([Vt+ι(b, h, i, ζ, j′, a) + EW
j′ − di j′]/νW)

(2.16)

is the fraction of households with state Ωwho choose work location j.
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2.2 Production

There are three sectors of production: the numeraire consumption/investment good,
residential floorspace construction, and commercial floorspace construction. Each of
these goods is produced in every location by competitive firms.

2.2.1 Traded-Good Firms

The consumption/investment good can be shipped across locations within a city at no
cost. Therefore it has a single price, which we normalize to 1. Following Ahlfeldt et al.
(2015), we assume that the good is produced using efficiency labor L and commercial
floorspace HC according to the production function

Y jt = Z jLαjtH
1−α
Cjt ,

where Z j is the total factor productivity (TFP) of location j.10
Firms pay wage w jt per efficiency unit of labor and rent floorspace at rate rCjt. Factor

markets are competitive, so each factor is paid its marginal product:

w jt = αZ jLα−1
jt H1−α

Cjt , (2.17)

rCjt = (1 − α)Z jLαjtH
−α
Cjt. (2.18)

Rearranging equation (2.17), labor demand can be written as:

L jt =

(
αZ j

w jt

) 1
1−α

HCjt (2.19)

Local labor supply can be computed by integrating over the density of state variables:

L jt =
∑

i

∫ ∫ ∫ ∫
ez(a)+ζgt(b, h, i, ζ, j, a) db dh dζda. (2.20)

2.2.2 Developers

There are two types of developers that specialize in building one of the two types of
floorspace. Let m ∈ {S,C} index the types of floorspace, with m = S denoting residential

10Here, Z j is an exogenous parameter. In Appendix Section B.1, we introduce agglomeration externalities
by endogenizing Z j as a function of local employment density. We show that this has a minor effect on the
quantitative results presented in Section 4.
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and m = C commercial. Developers construct new floorspace according to the production
function

Yh
mit = Zh

mitKmit,

where K is inputs of the numeraire good and Zh
mit is construction productivity, which varies

endogenously in a manner that we describe in Section 3.2. When making construction
decisions, developers take Zh

mit as given. Construction is irreversible: Yh
mit ≥ 0.

Residential floorspace demand from renters and owners can be computed by integrat-
ing over the density of state variables:

HSit =
∑

j

∫ ∫ ∫ ∫
[hr

t(b, h, i, ζ, j, a) + h] gt(b, h, i, ζ, j, a) db dh dζda. (2.21)

The population of each location (number of housing units) can be computed as

Nit =
∑

j

∫ ∫ ∫ ∫
gt(b, h, i, ζ, j, a) db dh dζda. (2.22)

Rearranging equation (2.18), commercial floorspace demand can be written as

HCjt =

[
(1 − α)Z j

rCjt

] 1
α

L jt (2.23)

The stock of floorspace in each sector evolves according to the law of motion

Ḣmit = Yh
mit − δHmit, (2.24)

so construction demand is Ḣmit + δHmit.
Floorspace construction costs are 1/Zh

mit. If floorspace price pmit equals construction cost
1/Zh

mit, developers are indifferent how much to produce. To clear the floorspace market,
we assume that they supply the amount of floorspace construction that is demanded. If
cost exceeds price, there is no new construction. If price exceeds cost, developers produce
an infinite quantity of floorspace, so this cannot be an equilibrium outcome. Formally,
construction supply is:

Yh
mit =


0 if pmit < 1/Zh

mit,

max{Ḣmit + δHmit, 0} if pmit = 1/Zh
mit,

∞ if pmit > 1/Zh
mit.

(2.25)
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Floorspace market clearing requires that supply equals demand: Yh
mit = Ḣmit + δHmit.

The floorspace market clearing can be written as the complementary slackness condition:

pmit = 1/Zh
mit and Yh

mit > 0, (2.26)

or pmit < 1/Zh
mit and Yh

mit = 0.

That is, if demand is sufficiently strong that there is positive construction, price equals
construction cost. If demand is sufficiently weak that no construction is demanded, then
prices are no longer determined by construction costs. Instead, market clearing requires
that prices be set so that demand falls at the depreciation rate δ, which is the fastest local
floorspace quantities can decrease since construction is irreversible. Note that in a steady
state, there is always strictly positive construction which exactly offsets depreciation:
Yh

mit = δHmit > 0. Hence, floorspace prices equal construction costs in steady state.

2.3 REITs

Commercial and rented residential units are owned by perfectly competitive real estate
investment trusts (REIT). REIT portfolios are perfectly diversified across all locations in
the city. REITs purchase floorspace by borrowing from an external credit market at the
interest rate q. They rent out space to households and firms at a rent rmit. Since REITs are
competitive, rents are set so that the return on real estate investments equal the risk-free
rate adjusted for depreciation and property taxes:

rmit = (δ + q + τh)pmit − ṗmit. (2.27)

As a result of a shock, REIT portfolios can appreciate or depreciate. This will affect
household wealth, as a fraction of household assets are invested in REITs.

2.4 Equilibrium

An equilibrium is an allocation, household value function Vt(Ω), density of state variables
gt(Ω), wages w jt, floorspace rents rmit, and prices pmit, such that:

1. Households optimize: equations (2.5)–(2.9) are satisfied.
2. The density of state variables is consistent with household optimization: equations

(2.10)–(2.16) are satisfied.
3. Firms optimize: equations (2.17)–(2.18) hold.
4. Labor markets clear: the values of equations (2.19) and (2.20) are equal in all locations.
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5. Residential and commercial ownership space markets clear: equation (2.26) holds
for m = S, C in all locations.

6. Residential and commercial rental space markets clear: equation (2.27) holds for
m = S, C in all locations.

A stationary equilibrium is an equilibrium in which all equilibrium objects are time-
invariant.

2.5 Solving the Model

Solving a dynamic quantitative urban model with age, idiosyncratic risk, tenure choice,
and illiquid housing presents several computational challenges. First, the state space is
large. The main reason is that commuting implies that the size of the state space increases
quadratically with the number of locations. For example, with the location concept we use
in our quantitative analysis, the New York commuting zone has 183 locations, but 33,489
location pairs. Each location pair has a separate wealth-housing-productivity-age distri-
bution. The state space is even larger when solving transition dynamics, because time is
an additional state variable. Second, as is standard in quantitative urban economics, we
choose local amenities and productivities to exactly match population and employment
shares, wages, and floorspace prices in every location. As a result, there are many param-
eters to estimate.11 Finally, fixed housing adjustment costs imply that households face a
stopping time problem of when to adjust housing. The induces kinks in the value function
where agents adjust housing, which precludes efficient discrete-time algorithms such as
the endogenous gridpoint method of Carroll (2006).

A primary contribution of this paper is to develop a method that overcomes these
challenges by combining tools from macro and urban economics. The key to tractability
is to set the model in continuous time, but only allow idiosyncratic shocks and discrete
choices at discrete, deterministic time intervals (shock ages). This timing assumption
builds on Greaney (2023).12 It allows us to make use of both efficient discrete- and
continuous-time numerical methods. As is common in quantitative urban models, the fact
that location preferences are drawn from an extreme-value distribution allows us to obtain
closed-form expressions for the value function and location choice probabilities at shock
ages (equations 2.6, 2.8, 2.13, and 2.16). Between shock ages, location and owner-occupied

11Our model delivers closed-form expressions for productivities as functions of populations, labor sup-
plies, and prices. We can therefore read productivities directly off data from a factual equilibrium. In
contrast to static QSMs, we do not have closed-form expressions for population and employment shares. As
a result, we have to numerically estimate 2I residential and workplace amenities.

12Greaney (2023)’s model does not have commuting and has only 50 locations.
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housing are fixed, and the agent’s problem reduces to a simple consumption-saving choice
(equations 2.5 and 2.10). This can be solved extremely efficiently using continuous-time
numerical methods developed by Achdou, Han, Lasry, Lions and Moll (2022).

There are four main advantages of continuous time that are relevant in our setting.13
First, the first-order conditions hold with equality and are sufficient at every point in the
state space. In a discrete-time version of our model, the first order conditions would be
inequalities due to occasionally binding borrowing constraints, and they would not be
sufficient due to nonconvexities resulting from fixed housing adjustment costs. Second,
the first-order conditions include only contemporaneous variables. In discrete time, first-
order conditions relate variables in one period to variables in the next period. As a result,
optimal policies are defined only implicitly, and must be computed by solving a root-
finding problem that typically involves interpolation and computing expectations at every
step. This is avoided in continuous time, where the first-order conditions yield explicit
expressions for policy functions. Third, since wealth does not jump discontinuously, the
HJB and KF equations that define the value function and density of state variables can be
represented as sparse matrix equations.14 This is advantageous because highly efficient
routines for solving sparse matrix equations are widely available. Fourth, the matrix
that represents the discretized KF equation is the transpose of the matrix that represents
the discretized HJB equation. As a result, once the value function has been solved for,
the density of state variables can be obtained at virtually no cost. For these reasons,
general equilibrium of heterogeneous-agent models can typically be solved much faster
in continuous time than in discrete time. The speed gains are greatest in models with
nonconvexities, such as ours.

The main advantage of limiting idiosyncratic shocks and discrete choices to shock ages
is that it allows us to replace workplace with a lower-dimensional state variable. Since
workplace is freely chosen at shock ages, which are also when workplace amenities are
enjoyed and commuting costs are paid, the only workplace characteristic that is relevant
between shock ages is wage. As a result, we can replace the discrete state variable work-
place with the continuous state variable wage in the HJB equation (2.5). The value of
workplace j in equation (2.6) is the value of earning j’s wage plus its workplace amenity
minus its commuting cost. Wage can be discretized on a grid whose cardinality is indepen-
dent of the number of locations, which keeps the state space size manageable even when
there are many location pairs. Suppose instead that the opportunity to change workplace
arrived according to a Poisson process.15 In that case, households would be uncertain how

13See Achdou, Han, Lasry, Lions and Moll (2022) for a more detailed discussion.
14Since we limit idiosyncratic shocks to shock ages, in our model these matrix equations are tridiagonal.
15This assumption is made for location choices by Crews (2023), Bilal (2023), and Bilal and Rossi-Hansberg

20



long they would have to remain in their current workplace. Since households care about
the entire future path of earnings, current wage would not be a sufficient state variable
for workplace.16 As a result, workplace would be a state variable for working-age agents,
and the state space size would increase quadratically in the number of locations instead
of linearly.

Another attractive feature of the shock age assumption is that it is realistic. It is also
common: discrete-time models implicitly assume that shocks and choices are made with
discrete frequency. While in reality shocks and moves can happen at any time, migration is
infrequent and labor and mortgage contracts often last for a year or more. In continuous
time, it is impractical to allow migration at any time because extreme-value location
preference shocks would induce continuous migration. If moving opportunities instead
arrived according to a Poisson process, some households with a strong desire to move
would not receive the opportunity to do so. With our assumption, households regularly
receive the opportunity to move with certainty.

Computational time. We demonstrate the performance of our algorithm by solving
stationary equilibrium in commuting zones (CZs) with varying numbers of locations:
Portland (18 locations and 324 pairs), Seattle (33 locations and 1,089 pairs), San Francisco
(55 locations and 3,025 pairs), Los Angeles (123 locations and 15,129 pairs), and New York
(183 locations and 33,489 pairs).17 Figure 2 shows the relationship between the number
of locations and time to solve equilibrium.18 Solving the model for a small CZ such as
Portland takes just 7.6 seconds, while New York takes 2.91 minutes. Solving it for the San
Francisco Bay Area, the CZ that we use for our quantitative analysis in Sections 3 and 4,
takes 20 seconds. Importantly, even though the size of the state space grows quadratically
with the number of locations, computational time grows less than quadratically. This is
due to the fact that wage is a sufficient state variable for workplace between shock ages.
As a result, it is possible to use our model to study cities with tens of thousands of location
pairs. Appendix C spells out the details of the computational algorithm.

(2023) in their continuous-time spatial models.
16In our model, households care about the path of wages until the next shock age. We approximate the

transition path of wages with a step function in which wages are constant between shock ages, so current
wage is a sufficient state variable for workplace. The accuracy of this approximation is increasing in the
frequency of shock ages.

17That is, we compute the value function and density of state variables given prices and parameters.
Locations and model parameters are described in Section 3.

18For this demonstration, we used a MacBook Pro laptop computer with a 1.4 GHz Intel core 1.5 processor.
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Figure 2: Number of locations and computational time
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Note: The solid line shows the relationship between computational time required to solve the stationary
equilibrium and the number of locations in an urban area. The lower dotted line shows extrapolated (using
the two smallest CZs) computational time if it were a linear function of the number of locations. The upper
dotted line shows extrapolated time if it were a quadratic function of the number of locations.

3 Application

In this section, we show how our model can be applied to study policy counterfactuals in
an urban area with many locations. We focus on the San Francisco Bay Area, which has
55 locations.19

3.1 Data

Model locations. Following Delventhal and Parkhomenko (2024), we define a model
location as the intersection of a Census Public Use Microdata Area (PUMA) and a county.20
The San Francisco Bay Area, as defined by the Association of Bay Area Governments,
contains 55 model locations that cover nine counties in the Bay Area: Alameda, Contra
Costa, Marin, Napa, San Francisco, San Mateo, Santa Clara, Solano, and Sonoma.21 This

19We used the same data sources to demonstrate the computational efficiency of our method for other
cities with a smaller or larger number of locations in Section 2.5.

20PUMA is the smallest geography for which individual-level data is publicly available. The Census
Bureau designs PUMAs to have between 100,000 and 200,000 residents. In densely populated areas, where
there are many PUMAs to a county, each PUMA is a model location. This allows us to take advantage of
geographically-detailed data and study patterns within metro areas. In rural areas, where there may be
several counties in a single PUMA, each county is a model location.

21For more details, see the website of the Association of Bay Area Governments: https://abag.ca.gov/.
We chose not to use the San Francisco Commuting Zone (CZ), as defined in Tolbert and Sizer (1996), because
it is separate from the San Jose CZ. At the same time, merging San Francisco and San Jose CZs would
require us to include several counties to the south of the area which appear to be far from the rest of the Bay
Area. We also chose not to use the San Francisco Combined Statistical Area, as it includes several counties
to the east of the area which are also quite far from the Bay Area. Instead, our definition of the Bay Area
is a contiguously developed area around San Francisco, San Pablo, and Suisun Bays. It has a combined
population of 7.8 million people according to the 2020 Census.
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number of locations implies 3,025 residence-workplace location pairs. Appendix Table
A.1 lists model locations and some of their characteristics.

Characteristics of residents. To obtain citywide characteristics of residents we use
the 2012–2016 five-year sample of the American Community Survey (ACS) microdata. We
restrict our attention to heads of household between 20 and 84 years old who do not live in
group quarters. To compute data moments that describe labor market outcomes, we focus
on 20–64 year olds, who report income and hours, work at least 35 hours a week and at
least 27 weeks a year, are not self-employed, and earn at least half of the federal minimum
wage. To compute data moments that describe housing market outcomes, we focus on
20–84 year olds and drop observations that report living in mobile homes, trailers, boats,
tents, and farmhouses.

Residents, jobs, and commuting. To obtain information on resident population, job
counts, and commuting flows, we turn to the LEHD Origin-Destination Employment
Statistics (LODES) database, taking averages across 2012–2016. LODES provides work-
place and residence job counts separately by education level or by industry at the Census
block level, which we aggregate to the level of model locations.

Wages. We use the Census Transportation Planning Products (CTPP) database and
the ACS data for 2012–2016 to obtain estimates of average wage for each location. We use
the data reported for the period from 2012 to 2016, and estimate wage indices for each
location after controlling for the effects of age, gender, race, industry, occupation, and
education. Appendix A provides more details.

Floorspace rents and prices. To obtain local prices of residential floorspace, we ag-
gregate the zip-code level Zillow Home Value Index for years 2012 to 2016 to the level of
model locations. Since in the steady state price-rent ratios do not differ across locations,
we obtain local rents by dividing prices by the model-implied price-rent ratio for the Bay
Area: 26.4. See Section 3.2 below for more information.

To obtain commercial real estate rents, we build hedonic indices for each model location
using the transaction-level data of leases on office, retail, and industrial properties for the
period from 2012 to 2016 from the data provider Compstak. The correlation between
commercial and residential rents across model locations is 90%. Appendix A contains
more details.

Commute times. We use the Census Transportation and Planning Products (CTPP)
data to estimate the commute times between each pair of model locations. The CTPP
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database reports commuting time data for origin-destination pairs of Census tracts, and is
tabulated using ACS data. Appendix Section A contains more details on how we process
this data.

3.2 Model Parameters

Next we describe how we obtain the values of parameters. When discussing internally
calibrated parameters, we mention which data moment is central in determining that
parameter, but we calibrate all parameters jointly. Parameter values are shown in Table 1.

Life cycle. Workers are born at age 20, retire at age 65, and die at age 85. The interval
between shock ages a ∈ As is one year. In Appendix Section B.2, we consider a version of
the model where the interval between shock ages is half a year. This does not change the
results of the counterfactual experiments that we describe later in Section 4.

Preferences. We calibrate the weight of housing in utility η to match the median rent-
to-earnings ratio of 0.24, calculated from the 2012–2016 ACS data for the San Francisco
Bay Area. The calibrated η is 0.3281. We calibrate the preference for homeownership χ to
match the homeownership rate. In the Bay Area, the homeownership rate is 54.2% and
the calibrated value of χ is 1.0506.

The Gumbel scale parameters νR and νW of the distributions of residence and work-
place preference shocks, respectively, determine the relative importance of location fun-
damentals versus idiosyncratic preferences when households make location choices. The
parameter νR governs how much sorting by income there is across locations. If idiosyn-
cratic preferences are strong, then there should be a lot of income mixing within locations
and average incomes across locations will not differ much. On the other hand, if the
preferences are weak, then there should be strong segregation by income and average
incomes across locations will differ substantially. Therefore, we first compute log average
hourly earnings of residents in each location.22 Then we calibrate νR to match the variance
across locations of log average earnings (0.01043) and obtain νR = 2.0833.

The parameter νW determines how far workers are willing to commute. If idiosyn-
cratic workplace preferences are strong, then workers should be relatively insensitive to
commute times when choosing their workplace. Otherwise, workplace choices should
be sensitive to commute times. Thus, we calibrate νW to match the 90th percentile of
commuting times for commutes 90 minutes or less and obtain νW = 0.2241.23

22We remove the effects of age, gender, industry, and years of schooling from log earnings prior to
calculating the average in a location.

23Out of 139 mln commuters we observe in the nationwide 2012–2016 LODES data, 9.8 mln travel between

24



Table 1: Model parameters

Parameter Description Value Target or source Value

Internally calibrated

ρ discount factor 0.0215 median wealth-earnings ratio 1.647
η weight of housing in utility 0.3281 median rent-to-earnings 0.240
χ preference for homeown. 1.0506 homeownership rate 0.542
ϑ0 bequest motive 0.5113 homeown., ages 80–84 vs 20–24 0.642
νR Gumbel scale, resid. shocks 2.0833 100× variance of log earnings 1.043
νW Gumbel scale, work. shocks 0.2241 p90 commute time, minutes 67.0
κ cost of commuting 0.0092 commuting gravity coeff. -0.0408
µ0 moving cost, intercept 12.5598 cross-county migration rate 0.0224
µa moving cost, age coeff. 0.1524 migration, ages 20–24 vs 80–84 0.0853

Externally calibrated

q interest rate 0.02 data
γ risk aversion 2 standard value
ϑ1 bequest motive curvature 0.01 see the text
θz labor prod. persistence term 0.9136 Floden and Lindé (2001)
σ2

z labor prod. variance term 0.0426 Floden and Lindé (2001)
α labor share in production 0.82 Valentinyi and Herrendorf (2008)
δ housing depreciation rate 0.0110 BEA and Davis et al. (2021)
ψ housing transaction fee 0.06 standard value
τh property tax 0.0071 Brookings data
τz payroll tax 0.179 OECD
ϕ collateral constraint 0.8 standard value

minH smallest own. size 4.0781 median wage / p5 own. value
maxH largest own. size 10.7834 p90 own. / p10 own. size
maxHr largest rental size 5.3917 p90 rental size / p10 own. size

f S share of resid. REIT 0.0845 SCF data
f C share of comm. REIT 0.0574 SCF data

Note: The table describes model parameters. See the text for more details.

Migration. We parameterize the moving cost as a linear function of age:

µii′(a) = 1(i′ , i)(µ0 + µaa). (3.1)

locations that are over 3 hours apart. Due to reasons outlined in Graham et al. (2014), many of these long
commutes arise due to errors in assigning work or residence locations. We therefore truncate observations
with commute times greater than 90 minutes from our average commute time calculations.
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In the ACS data, we can identify migration across the nine counties within the Bay Area,
but not across PUMAs. Thus, we calibrate the moving cost intercept µ0 to match the
annual migration rate between locations that belong to different counties within the Bay
Area. In 2012–2016, this migration rate was 2.24 percent.24 We calibrate the age coefficient
µa to match the difference in migration rates between 20–24 year olds and 80–84 year olds,
which is equal to 8.53 percentage points. We obtain µ0 = 12.5598 and µa = 0.1524.

Commuting. We parameterize the transportation cost as a linear function of travel
time,

di j = κ × timei j, (3.2)

where timei j is the time in minutes required to travel from location i to location j. Parameter
κmeasures the sensitivity of individual utility to the time spent commuting. As is standard
in the literature, we first estimate the “gravity regression,”

ln Ni j = ς timei j + φ
R
i + φ

W
j + εi j, (3.3)

where Ni j is the fraction of workers who live in location i and work in j, and φR
i and φW

j

are residence and workplace fixed effects. Then, we calibrate κ such that the estimated
coefficient ς is the same in the model as in the data, and obtain κ = 0.0092.

Income. The lifecycle component of labor productivity z(a) is taken from Hansen
(1993). Without loss of generality, we scale z(a) so that median earning is 1. The parameters
of the stochastic process for idiosyncratic labor productivity ζ, the persistence term θz and
the variance term σz, are taken from Floden and Lindé (2001). We discretize ζ using
Rouwenhorst’s method (Rouwenhorst 1995, Kopecky and Suen 2010) with 5 gridpoints.

Bequests. We calibrate the strength of the bequest motive ϑ0 to match the percentage-
point difference in homeownership rates between 80–84 year-olds and 20–24 year-olds. In
San Francisco, this difference is 64.2 percentage points and our calibrated ϑ0 is equal to
0.5113. We set the curvature parameter ϑ1 to 0.01, a small positive number that ensures
that the bequest function is well-defined for zero bequests and is approximately log-linear
in the size of the bequest.

Housing. We calculate the housing depreciation rate δ as follows. From the BEA
Depreciation Estimates for 2016, we divide the value of current-cost depreciation of res-
idential fixed assets owned by households by the value of the current-cost net stock of

24Migration across county borders is relatively uncommon. The migration rate for any residential move
within the Bay Area is higher at 9.7 percent.
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residential fixed assets, and obtain the annual depreciation rate of 0.0239. This estimate
excludes the value of land embedded in house values. Since land does not depreciate, we
multiply the structures depreciation rate by 1 − 0.5393, where 0.5393 is the average share
of land in house values in the Bay Area, from Davis, Larson, Oliner and Shui (2021)’s
tract-level estimates. This yields δ = 0.011.

Next, we describe how we build the sets of possible sizes of owner-occupied and rental
units,H andHr. We letH be discrete andHr continuous.25 For owner-occupied houses,
we build an equally-spaced grid with six support points. We calibrate the smallest and
the largest value in the grid as follows. The smallest value is set to the ratio of the value of
the house in the 5th percentile of the value distribution in the Bay Area to median labor
earnings (equal to 1 in our model). We use ACS to build the distribution of house values
and control for year of construction and type of structure. To obtain the largest value,
we multiply the smallest value by the ratio of the 90th to the 10th percentiles of owner-
occupied house sizes in the San Francisco metropolitan area from the 2015 American
Housing Survey (AHS) data.. Our calibrated smallest and largest owner-occupied house
sizes are 4.0781 and 10.7834.26

The lower bound of the size of a rental unit is zero. We calibrate the maximum size
to match the ratio of the 90th percentile of rental units to the 10th percentile of owner-
occupied units in the 2015 American Housing Survey (AHS) data, equal to 1.32. Our
calibrated largest rental unit size is 5.3917.

REIT ownership. The shares of REITs in household liquid assets, f S and f C, are
calculated as follows. From the 2016 Survey of Consumer Finances (SCF) data, we estimate
that the average household owns $50,280 of residential real estate other than primary
residence ($49,432 directly and $848 via REITs), as well as $34,186 of commercial real
estate ($29,462 directly and $4,724 via REITs). An average household owns $595,348 of
total assets excluding primary residence.27 This implies that an average household has
f S = 8.45% = $50, 280/$595, 348 of her assets in residential real estate other than primary
residence and f C = 5.74% = $34, 186/$595, 348 in commercial real estate.

Taxes. The property tax rate τh is calculated as follows. First, we use the county-level
data on taxes paid as a share of home value from Brookings for the nine counties in the

25For computational reasons, it is convenient when the distribution of owner-occupied dwelling sizes is
discrete because the size is a state variable, and when the distribution of rental dwelling sizes is continuous
because a renter’s housing consumption can be solved analytically from first-order conditions.

26Without loss of generality, we normalize the population-weighted average house price to 1 (which
corresponds to median earning).

27The numbers for the median household are much smaller.
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Bay Area.28 Then, we use county population levels from the 2010 Census and find the
weighted-average property tax rate of 0.71%. We use the payroll tax rate reported by the
OECD for the U.S. The average tax rate for the period 2012–2016 was 17.9%.29

Interest rate and discount factor. We model the city as a small open economy and
set the interest rate at q = 0.02 which corresponds to the average 10-year real interest rate
from 1962 to 2024. Using the calibrated values of δ and τh and equation (2.27), this interest
rate results in the price-rent ratio of 26.4.30 We calibrate the discount factor ρ to match the
median wealth-income ratio of 1.647 from the 2016 SCF, and obtain the value of 0.0215.

Production. Valentinyi and Herrendorf (2008) estimate the share of land and struc-
tures in production to be 0.18. Since the numeraire production technology is constant-
returns-to-scale in floorspace and labor, we set α = 0.82.

Local amenities and traded-good productivity. Local residential and employment
amenities, ER

i and EW
j , are calibrated to match local residential population and employ-

ment. Local labor productivity in the traded-good sector Z j is calibrated to match average
wages for workers employed in location j. The values of location-specific parameters are
listed in Appendix Table A.1.

Construction. The construction productivity functions Zh
mit are chosen to match em-

pirical estimates of floorspace supply elasticities. Let rmit(pmit) denote the floorspace rent
when floorspace price is pmit, determined by equation (2.27). In the residential segment,
we assume that Zh

Sit is such that rent when construction is strictly positive (so that price
equals construction cost) is a log-linear function of number of housing units:

rSit(1/Zh
Sit) = rSi

(Nit

Ni0

)1/ξS
i

. (3.4)

In the previous expression, ξS
i is the housing unit supply elasticity in the residential

market, rSi is the exogenous component of residential construction productivity, and Ni0 is
population in the initial steady state. Recall that construction irreversibility implies that
construction may not be strictly positive for part of the transition path after an unexpected
shock, if demand is sufficiently weak. In this case, pSit < 1/Zh

Sit, and the equilibrium rent rSit

28Brookings property tax map: https://www.brookings.edu/articles/map-property-taxes-in-your-
county/ (accessed on September 11, 2023).

29See https://stats.oecd.org/index.aspx (variable “Average income tax rate” located in “Public Sector,
Taxation and Market Regulation”/“Taxation”/“Taxing Wages”; accessed on September 14, 2023).

30Using individual observations from the 2012–2016 ACS data, we estimated hedonic price and rent
indices, and calculated the price-rent ratio of 26.7, close to the value in the model.
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will not equal rSit(1/Zh
Sit). However, since construction is always strictly positive in steady

state, equation (3.4) ensures that residential rents are log-linear functions of populations
in the long run. This is also true of prices, since the long-run price/rent ratio is 1/(δ+q+τh)
(see equation 2.27).

We calculate ξS
i by combining 10-year tract-level unit supply elasticities from Baum-

Snow and Han (2023) and 30-year MSA-level elasticities from Saiz (2010). The productivity
shifter rSi is chosen to match observed rents rdata

Si in the initial steady state: rSi = rdata
Si .

In the commercial segment, we set Zh
Cit so that, when construction is strictly positive,

there is a log-linear relationship between commercial rents and commercial floorspace
quantity HCit:

rCit(1/Zh
Cit) = rCi

(HCit

HCi0

)1/ξC
i

. (3.5)

We infer rCi in the same way as for the residential sector but using the Compstak com-
mercial rent data. Due to the absence of local estimates of commercial floorspace supply
elasticities, we calculate ξC

i by combining 10-year tract-level residential floorspace supply
elasticities from Baum-Snow and Han (2023) and 30-year MSA-level elasticities from Saiz
(2010).31 Appendix A provides more details and Appendix Table A.1 list the values of
elasticities and construction productivities.

3.3 Non-targeted Moments

This section describes the baseline model’s implications for commuting, income, wealth,
homeownership, and migration.

Commuting. While we observe the full commuting flow matrix for San Francisco,
our calibration only targets the elasticity of flows with respect to commute times and the
number of residents and workers in each location. Panel A of Figure 3 shows that our
model matches commuting flows quite well. The correlation between log shares in the
model and in the data is 0.89. Panel B shows that our model also produces a distribution
of commuting times that is similar to the one in the data.

Income and wealth. In our calibration, we match average wages by workplace and
the variance of wages across residential locations. Panel C of Figure 3 shows that our
model also matches the distribution of average incomes across residential locations well,
with a correlation of 0.79, albeit with a smaller variance than in the data. Our model also

31Many of the same regulatory and administrative processes at the local level affect both residential and
commercial development.
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Figure 3: Non-targeted moments

Panel A: Commuting flows Panel B: Commuting times Panel C: Income by location
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Note: The maps figure shows several non-targeted moments, in the model and in the data. See the text for
more details.

produces realistic patterns for wealth inequality. As panel D shows, the distribution of
wealth by age follows a hump-shaped profile and wealth levels for homeowners are much
higher than for renters.32 Furthermore, Figure 4 shows that in our model, as in the data,
both financial and housing wealth are the highest in San Francisco, Silicon Valley, and San
Rafael.

Homeownership. Our calibration targets the overall homeownership rate and the
percentage-point difference in homeownership rates between 80–84 year-olds and 20–24
year olds. Panel E of Figure 3 shows that our model is successful in generating a realistic
life-cycle evolution of homeownership rates.

Migration. We target the overall migration rate across counties within the Bay Area
and the difference in migration rates between ages 20–24 and 80–84. As shown in panel F
of Figure 3, our model matches the entire age profile of migration quite well. Importantly,
our model generates the flattening of the migration profile with age.

32Figure 9 in Davis and Van Nieuwerburgh (2015) shows that these relationships are similar in the data.
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Figure 4: Spatial distribution of wealth
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Note: The maps show the average financial and housing wealth relative to median annual wage in each
location. Since renters hold zero housing wealth, housing wealth is calculated for homeowners only.

4 Policy Experiments

In this section, we use our model to investigate the long-run and transitional effects of two
illustrative policy experiments that are commonly studied using static QSMs. We then
discuss why dynamics and rich spatial heterogeneity are necessary to obtain many of the
important results of these experiments.

4.1 Effects of Housing and Transportation Policies

We use the model to run two counterfactual experiments: (1) an increase in housing supply
in the most constrained locations and (2) an improvement the transportation network. In
both experiments, we assume that the population of the Bay Area is fixed, i.e., it is a closed
city. These experiments are not meant to serve as evaluations of specific policies, but rather
as illustrations of what our dynamic model with homeownership can offer compared to
traditional static QSMs.

4.1.1 Counterfactual Experiments

Upzoning. In our first counterfactual scenario, housing supply increases. Since hous-
ing supply is endogenous, the increase in housing supply is engineered through an in-
crease in the productivity of the residential construction sector which can represent, for
example, a relaxation of zoning constraints, often referred to as upzoning.33 In particular,

33Zoning constraints or other administrative barriers to housing supply are commonplace in U.S. cities
(Gyourko and Molloy, 2015).
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Figure 5: Counterfactual changes in housing productivity and travel times

Panel A: Upzoning, Panel B: HSR, outbound Panel C: HSR, inbound
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Note: Panel A shows the increase in housing construction productivity Zh
Si0 in the upzoning counterfactual.

Panel B shows the locations of HSR stations in the HSR counterfactual, as well as the reduction in outgoing
travel times in minutes for each location, weighted by pre-HSR commuting flows. Panel C shows the
reduction in incoming travel times, weighted by pre-HSR commuting flows. Bordered locations are the
locations where upzoning takes place (panel A) or where HSR stations are located (panels B and C).

we first calculate the median housing productivity Zh
Si0 in the Bay Area and then, for

each location below the median, we increase its Zh
Si0 10% toward the Bay Area median.34

Locations with low calibrated Zh
Si0 are those where prices are relatively high, which may

indicate insufficient supply of housing. Panel A of Figure 5 shows that upzoning is largely
concentrated around Silicon Valley and San Francisco–areas that are notorious for the
difficulty to build and for high prices.

High-Speed Rail. In our second counterfactual scenario, the transportation infras-
tructure is improved. In particular, we simulate the construction of the Bay Area section of
the California High-Speed Rail (HSR).35 We do not model construction costs. It envisages
four stations in the Bay Area: San Francisco, Millbrae/SFO, San Jose, and Gilroy. The
projected travel time between San Francisco and Millbrae/SFO is 10 minutes, between
Millbrae/SFO and San Jose is 20 minutes, and between San Jose and Gilroy is 18 minutes.

To simulate the HSR in our model, we calculate the counterfactual commuting time
matrix as follows. First, we adjust travel times between model locations that receive an
HSR station by adding 2 minutes for each stop, 5 minutes waiting time for each trip, as

34A common alternative upzoning counterfactual is to increase supply elasticities ξS
i in low-elasticity

locations (see for example Hsieh and Moretti 2019). Solely changing elasticities, without another spatially
heterogeneous shock, has limited effects. For simplicity, we instead change construction productivities. See
Greaney (2024) for further discussion of housing supply elasticity counterfactuals.

35Fajgelbaum et al. (2023) also study the impact of the California HSR in a static quantitative spatial
model of California.
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well as extra time needed to travel between residence within the model location and the
station and between the station and workplace destination. This extra time corresponds
to the average travel time for trips within the model location from the CTPP. Then, we
construct alternative routes between each pair of locations that use the HSR network.
Finally, the counterfactual travel time is the minimum between the travel time on a route
that uses HSR and the pre-HSR travel time.

The introduction of the HSR lowers travel time for 659 out of 3,025 location pairs,
which represent 4.7% commuting flows in the benchmark economy. Panels B and C
of Figure 5 show the reduction of outbound and inbound travel times, i.e., the travel
times experienced by residents and workers in a given location, weighted by pre-HSR
commuting flows. Time savings are the largest in locations with stations but remain
substantial for many neighboring areas. Due to the asymmetric nature of the commuting
time matrix and differences in the number of residents and jobs in each location, the
magnitudes of changes in outgoing and incoming travel times may differ in a given
location.

In these counterfactuals, the upzoning and the introduction of the HSR are unantici-
pated shocks. As soon as they occur, agents correctly anticipate the entire future path of
prices (wages, prices, and rents in both the residential and commercial property sectors) in
every location. Appendix Section C details the computation of the transition path. Also,
in each experiment local productivity in the tradeable sector is fixed. In Appendix B.1, we
demonstrate that endogenizing productivity to allow for agglomeration effects does not
lead to meaningfully different quantitative results.

4.1.2 Transitional and Long-Run Spatial Effects

Upzoning. The increase in construction productivity allows developers to build more
housing in upzoned locations. As can be seen in panel A of Figure 6, this attracts more
residents from locations where upzoning did not take place in the long run. However, not
all upzoned locations gain residents. For example, because upzoning is more agressive
in Silicon Valley (see panel A of Figure 5), it draws some of its new residents from East
Bay where upzoning is more moderate. Panel B of Figure 6 shows the long-run relocation
of jobs to the areas around Silicon Valley and San Francisco, which happens because
firms in those areas have access to new workers who moved to these areas in response to
greater housing supply. Long-run movements of residents and jobs can also be analyzed
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Figure 6: Long-run spatial effects of upzoning
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Note: The maps show the long-run percentage changes in residents and jobs in the upzoning counterfactual.
Bordered areas represent the locations where upzoning takes place.

using a static QSM.36 Our dynamic approach, however, also allows looking at transitional
dynamics.

Panels A and B in Figure 7 show how the number of residents and jobs evolve along
the transition path in each location. Due to moving costs, housing transaction costs, and
durability of structures, it takes on average 8.9 and 8.3 years for the number of residents
and jobs, respectively, to move halfway to the new steady state, and about 75 years for the
full transition.

Residential prices and rents fall in upzoned areas on impact and remain lower in the
long run, as demonstrated in panels D and E of Figure 7. As residents move away from
non-treated locations, prices and rents there fall as well, and every single location in the
Bay Area experiences a long-run decline in house prices. As the number of jobs around
upzoned locations goes up, the demand for commercial real estate increases and so do
commercial prices and rents, as shown in panels G and H of Figure 7.

Price-rent ratios exhibit a non-monotonic pattern. In the residential segment, the
price-rent ratios in most upzoned locations jump on impact but then gradually decrease
(panel F in Figure 7). This is because, as more residents move in each year following
the zoning reform, residential rents increase after a large initial drop, while prices are
forward-looking and immediately reflect the entire expected future rent path. Moreover,

36This does not mean that comparing two equilibria of a static model will yield the same results as
comparing two steady states of the dynamic model. Our model has risk-averse agents who make forward-
looking choices, which affects the steady state. The standard static QSM is not nested by our model.
Comparing our results to those from a static model is further complicated by the fact that a static model
would have different parameter values, some of which would have to be calibrated using different moments
than the ones we use.
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Figure 7: Transitional effects of upzoning

Panel A: Residents Panel B: Jobs Panel C: Homeownership
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Note: The figure shows the evolution of residents, jobs, homeownership rates, real estate prices, rents, and
price-rent ratios over the transition in the upzoning counterfactual. Blue lines represent the model locations
where housing supply productivity was increased. Gray lines represent other locations.

by making housing supply more abundant and lowering house prices, the policy promotes
homeownership across the Bay Area. Panel C shows that homeownership rates go up in
most locations, upzoned or not.

In the commercial real estate segment, the price-rent ratio first jumps in many locations
in anticipation of a gradual increase in jobs. Then it slowly falls and returns to the initial
level (panel I in Figure 7).

High-Speed Rail. The construction of the HSR reduces time required to travel to
and from locations with stations, as well as many nearby areas. Thus, residents who live
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Figure 8: Long-run spatial effects of HSR
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Note: The maps show the long-run percentage changes in residents and jobs in the HSR counterfactual.
Bordered areas represent the locations where HSR stations are built.

in those locations have better access to jobs in the Bay Area, while employers in those
locations have better access to workers.

As a result, the four locations with HSR stations experience an increase in residents, as
shown in panel A of Figure 8. However, as we can see in panel A of Figure 9, these changes
only happen gradually due to moving costs, housing transaction costs, and durability of
structures. The full transition unfolds over 75 years, and it takes on average 9.3 and 14.5
years for the number of residents and jobs, respectively, to move halfway to the new steady
state. The magnitude of long-run population growth in locations with stations ranges from
2.6% in San Jose to 9.8% in San Francisco. One important reason for this heterogeneity
is relatively high estimated housing supply elasticity in downtown San Francisco. This
allows it to have a lower price growth (see panel D) and a higher population growth than
in other locations.37

The HSR has an interesting effect on the distribution of jobs in the Bay Area. With
the exception of Millbrae/SFO, all treated locations lose jobs on impact, as can be seen in
panel B of Figure 9. However, as time passes and new residents move into locations with
stations, jobs partly recover. For example, Gilroy loses 3% of jobs on impact but the long-
run job decline is only 2.1%. Gilroy is relatively unproductive and some residents who
held local jobs before the HSR switch to more attractive jobs elsewhere and use the HSR
to get to work. Many locations that do not have HSR stations but are relatively close also
gain jobs. For example, the location to the south of Millbrae/SFO that contains San Mateo
(and a large area of mostly undeveloped land) experiences a nearly 16% long-run increase

37In our calibration, the elasticity is 1.47 in the downtown San Francisco location where the HSR station
is built and 0.31 in the location where the San Jose station is built.
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Figure 9: Transitional effects of HSR

Panel A: Residents Panel B: Jobs Panel C: Homeownership
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Note: The figure shows the evolution of residents, jobs, homeownership rates, real estate prices, rents, and
price-rent ratios over the transition in the HSR counterfactual. Thick blue lines represent the four model
locations that contain the HSR stations. Thin gray lines represent other locations.

in jobs (see panel B of Figure 8) because its workers experience the largest reduction in
travel times of all locations (see panel B of Figure 5). Other factors that help San Mateo
gain more jobs than any other location are its high productivity and high elasticity of
commercial floorspace supply.

The HSR project has a sizable effect on real estate markets, especially in locations with
HSR stations. House prices jump immediately by between 2 and 6.9 percent in anticipation
of future growth of rents (panel D of Figure 9). In the long run, price appreciation reaches
2.8–8.8 percent. The variation in magnitudes reflects different population dynamics and
housing supply elasticities across treated locations. Rents adjust more gradually but also
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end up higher in the long run (panel E). As a result, the price-rent ratio in treated locations
jumps in the first few years (panel F). This rise in price-rent ratios lowers homeownership.
While workers, especially young ones, are eager to move closer to the HSR, higher price-
rent ratios often mean that they choose to rent. As panel C shows, homeownership
rates fall by nearly 6 percentage points in San Francisco in the first 20 years before partly
recovering in the long run. At the same time, the outflow of residents from several other
locations leads to lower price-rent ratios and higher homeownership there.

Panels G to I of Figure 9 show the evolution of commercial real estate prices, rents,
and price-rent ratios. Since moving jobs is costless, both prices and rents reach their new
long-run levels in just a few years.

4.1.3 Welfare Analysis

Next, we compute welfare gains from each of the policies. We measure welfare effects as
the percentage change in the consumption aggregate c1−ηhη, applied in the initial steady
state for the remainder of a household’s lifetime, that would make it indifferent between
remaining in the initial steady state and experiencing the counterfactual transition.

Aggregate welfare gains. Table 2 shows that upzoning leads to an aggregate welfare
gain of 0.5%. The HSR results in an aggregate welfare gain of 0.4%. We also compute
welfare gains by ignoring the transition, simply comparing the pre-policy and the new
long-run steady states. In the case of the HSR, the difference between the two measures
is negligible. However, in the upzoning counterfactual, not accounting for the transition
overestimates welfare gains by over one-half. This is because the expansion of housing
supply leads to sizable wealth losses among homeowners in the upzoned locations which
lowers their utility at the beginning of the transition due to legacy real estate exposure.
Another reason why accounting for transition dynamics lowers welfare gains is that it
is costly to relocate to locations that offer higher utility due to moving and housing
transaction costs. This is also true in the HSR counterfactual, where welfare gains would
be larger in the absence of moving and transaction costs.

Our dynamic setting with rich agent heterogeneity allows us to dissect welfare gains
along several dimensions. Figure 10 shows welfare effects by age, worker productivity,
liquid wealth, tenure status, and residential location before the shock took place.

Distributional welfare gains: Upzoning. In the upzoning counterfactual, welfare
effects are positive for renters and young owners, and negative for older owners, as shown
in panel A of Figure 10. Many homeowners, especially the older ones, lose housing
wealth as a result of housing supply expansion. Homeowners’ welfare gains depend little
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Table 2: Aggregate welfare effects

Welfare gain, % Upzoning HSR

Accounting for transition 0.50 0.40
Comparing steady states 0.78 0.40

Note: The table describes aggregate welfare gains in the two counterfactual experiments. Welfare gain is
measured as the percentage change in the consumption aggregate c1−ηhη, applied for the remainder of a
household’s life, that all households would need to receive in the initial equilibrium to equalize average
lifetime utility pre- and post-counterfactual.

on whether their location was upzoned or not. Due to spatial equilibrium effects, non-
upzoned locations lose residents and also see a decline in home values. Welfare gains for
owners monotonically decrease with age, because older owners have fewer working-age
years to use the labor market as insurance against the negative housing wealth shock.
Young homeowners gain because they tend to own smaller houses and upzoning allows
them to move to a bigger house at a lower cost.

Renters win not only because rents fall but also because lower prices make it easier for
them to become homeowners. The gains among renters increase with age for those who
live in upzoned locations, and fall for those who live elsewhere. Older renters are less
mobile. They are more likely to remain in their current locations and reap the benefits of
the increased housing supply in upzoned neighborhoods.

Panel C demonstrates the role of wealth. The least wealthy owners lose the most. They
are highly leveraged and have little liquid wealth, thus even a modest negative shock to
house values will have large effects on their welfare. The wealthiest owners, especially
those in upzoned locations, also lose more from upzoning because they tend to have a
larger amount of housing wealth before the shock. Wealthier renters benefit more because,
as prices fall, a dollar of wealth goes farther and allows them to purchase a larger house.

Distributional welfare gains: HSR. In the HSR experiment, welfare gains are high
for young individuals and even higher for the 30–40 year olds. Then they fall with age
until retirement, as shown in panel B of Figure 10. This is because the youngest individuals
can enjoy the benefits of the HSR for a longer period of time. However, young workers are
also more geographically mobile and are more likely to move away from neighborhoods
with stations due to idiosyncratic preference shocks.

Due to the appreciation of house prices due to greater connectivity in many locations,
homeowners in locations with HSR stations are the biggest winners. This is especially

39



Figure 10: Distributional welfare effects

Panel A: Upzoning, by age Panel B: HSR, by age
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Panel C: Upzoning, by wealth Panel D: HSR, by wealth

0 20 40 60
Wealth

-2

-1

0

1

2

3

W
el

fa
re

 g
ai

n,
 %

Owners

upzoned
not upzoned

0 20 40 60
Wealth

-2

-1

0

1

2

3
Renters

upzoned
not upzoned

0 20 40 60
Wealth

0

1

2

3

4

5

6

W
el

fa
re

 g
ai

n,
 %

Owners

HSR
<20 min
>20 min

0 20 40 60
Wealth

0

1

2

3

4

5

6

Renters

HSR
<20 min
>20 min

Note: The figure shows counterfactual welfare gains by age (panels A and B) and total wealth (panels C
and D) in each counterfactual. Welfare gains are shown separately for owners (left side of each panel) and
renters (right side), as well as separately for residents of treated and non-treated locations. Welfare gain is
measured as the percentage change in the consumption aggregate c1−ηhη, applied for the remainder of a
household’s life in the initial steady state, that would make it indifferent between remaining in the initial
steady state or experiencing the counterfactual transition.

true for retirees who are unlikely to move to a different location and can reap the benefits
of higher house values. At the same time, old renters who live in locations with HSR
stations lose because they do not benefit from greater job connectivity but their rents still
go up.

Proximity to the HSR matters too, and welfare gains are concentrated among residents
who live in locations where HSR stations are built. However, the gains are also substantial
for those who live in other locations that are fewer than 20 minutes away and are smaller
for those who live farther out.

Panel D shows that, while owners of all wealth levels gain, the least wealthy owners in
locations with HSR stations benefit the most. They are leveraged and even small positive
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shocks to house values have large effects on their welfare. The wealthiest owners also
experience sizable gains. They tend to own large houses in the pre-HSR economy, and
when a station is built in their neighborhood, they experience a wealth windfall. Gains
for renters do not depend much on wealth.

4.2 Why Dynamics, Many Locations, and Homeownership Matter

4.2.1 Why Dynamics and a Large Number of Locations Are Required

There is a sizable literature that has studied versions of our counterfactuals in different
models. Policy counterfactuals with improving infrastructure have been predominantly
studied using static QSMs with a large number of locations (Severen, 2021; Allen and
Arkolakis, 2022; Tsivanidis, 2023; Chen et al., 2024; Fajgelbaum et al., 2023). Policy coun-
terfactuals with increasing housing supply within a city have been studied either using
static frameworks (Allen et al., 2016; Acosta, 2022) or using dynamic frameworks with a
small number of within-city locations (Favilukis et al., 2022).

Our policy experiments demonstrate how a dynamic model produces important re-
sults that cannot be obtained from a static model. First, a static model cannot produce
transitional dynamics that arise from individual choices. As we showed in Figures 7 and
9, transitions can be long and sometimes non-monotonic. They allow for a policy im-
pact analysis at any time horizon, rendering our model more suitable for policymaking.
The standard approach in the literature of comparing two static equilibria would miss
the fact that the influx of residents into treated and some non-treated locations happens
very gradually. Prices and rents adjust at different paces so that the policy has different
effects on renters and owners. Moreover, disregarding transitions may results in over- or
underestimation of welfare gains, as was the case in our upzoning experiment.

Second, a static model cannot accommodate risk and intertemporal choices such as sav-
ing and housing tenure choice. But these choices are intertwined with location choices.
Workers choose where to live and work not only based on wages, housing costs, commut-
ing costs, and amenities, as in the static model, but also take into account which locations
will allow them to make optimal tenure choices, saving decisions, and provide better
insure against labor income risk.

Third, the dynamic nature of our model results in rich agent heterogeneity by age,
productivity, housing tenure, housing and non-housing wealth. Modeling these char-
acteristics in a static model would require far-fetched assumptions. However, as we
demonstrated in Figure 10, this heterogeneity is crucial for understanding the welfare
implications of spatial policies.
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Our policy counterfactuals also show why a large number of locations is necessary; one
cannot simply collapse the geography into a small number of locations such as the treated
and the non-treated. For example, the HSR produces a non-trivial adjustment of travel
times throughout the entire transportation network, even though stations are built in just
four locations. As a result, there is large variation in how different locations respond to the
policy. A simpler model with two locations, treated and non-treated, will miss such spatial
spillover effects. It would also be unable to explain why some non-treated neighborhoods
benefit and others lose from the policy. Similarly, in the upzoning counterfactual, jobs
change not only based on the treatment status but also based on the proximity of a given
area to an upzoned location.

4.2.2 Why Homeownership Is Required

Adding homeownership to dynamics and a large number of locations adds complexity.
It also necessitates modeling saving and borrowing decisions.38 So it is reasonable to ask
how important this extra addition is.

To demonstrate the importance of homeownership, we build a version of our model
which shuts down homeownership. By setting the ownership preference parameter χ = 0,
we ensure that no one chooses to own a house of any size. We continue to allow individ-
uals to save in the risk-free asset. We fix the parameters (ρ, ϑ0, ϑ1), calibrated from wealth
moments, to their benchmark model values. We apply the calibrated value for the max-
imum owner-occupied house size (maxH) to rental housing in the no-ownership model
to ensure that our results are not driven by differences in feasible housing consumption.
Then, to show the importance of saving and borrowing choices, we build another version
of the model where not only all households are renters but they also live hand-to-mouth.

In both the no-ownership and the hand-to-mouth models, we allow changes in local
real estate values to affect household utility. To make these models comparable to our
main model, where 60.9% of the value of residential real estate in the Bay Area is owned by
homeowners, we assume that 60.9% of residential real estate in each location is owned by
location-specific REITs that redistribute all gains or losses equally to local households. This
preserves the lack of spatial diversification that homeowners in the main model experience
when shocks hit. This approach is similar to how several other spatial models have
incorporated homeownership without explicitly modeling it.39 The remaining residential

38In the quantitative model, homeownership multiplies the size of our state space by the number of
wealth grid points times the number of house size grid points. In our quantitative model, the wealth grid
has 50 points and the house size grid has 7 points. Thus, our model has a state space that is 350 times larger
than a model with hand-to-mouth renters.

39See Redding and Rossi-Hansberg (2017) for a discussion of this approach.
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Table 3: Distribution of Welfare Gains

Welfare gains, % Upzoning HSR

Main No own. HTM Main No own. HTM

Mean 0.50 0.45 0.35 0.40 0.30 0.09
Variance 1.30 0.17 0.04 0.59 0.13 0.01

1st percentile -3.85 0.02 0.04 -1.29 -0.44 -0.19
5th percentile -1.42 0.05 0.07 -0.37 -0.12 -0.05

10th percentile -0.74 0.09 0.10 -0.14 -0.05 -0.02
25th percentile -0.16 0.20 0.19 0.02 0.07 0.02

Median 0.20 0.35 0.33 0.28 0.27 0.09
75th percentile 0.67 0.54 0.46 0.51 0.47 0.15
90th percentile 1.36 0.96 0.62 0.78 0.65 0.20
95th percentile 1.90 1.31 0.75 1.11 0.80 0.23
99th percentile 3.01 2.05 1.01 2.87 1.51 0.40

Fraction harmed, % 34.25 0.09 0.02 22.12 14.46 15.56

Note: The table shows the distribution of welfare gains in the two counterfactuals, using the main model,
the model without homeownership, and the hand-to-mouth model. The last line reports the fraction of
households who experience welfare losses. Welfare gain is measured as the percentage change in the
consumption aggregate c1−ηhη, applied in the initial steady state for the remainder of a household’s lifetime,
that would make it indifferent between remaining in the initial steady state or experiencing the counterfactual
transition.

real estate and commercial real estate are held by spatially diversified REITs, as in the
main model. Households own equal shares of these REITs, and we set the fractions that
are owned by households in the model equal to that from the main model.40

We re-estimate all other parameters of the no-ownership and hand-to-mouth models.
We then re-run the HSR and upzoning counterfactuals. Relocations of residents and
jobs are similar to the main model. Transitional dynamics are also broadly similar; see
Appendix Sections B.3 and B.4 for details.

However, as Table 3 shows, welfare gains differ substantially between the main model
and the two alternative models. Without homeownership, welfare gains from the HSR are
smaller for half the population. A large source of welfare gains in the main model comes
from house price appreciation experienced by homeowners close to train stations. Expo-
sure to local REITs cannot fully capture this effect because households in our main model

40Recall that in the main model, households invest fraction f S = 0.0845 of their liquid assets in the
residential REIT and fraction f C = 0.0574 in the commercial REIT. In both sectors, this implies that not all
real estate is owned by households in the model. We assume that the remainder is held by absentee owners.
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select into homeownership and hold owner-occupied housing with leverage. Conversely,
welfare gains from upzoning are higher for the majority of residents in the model without
homeownership. In the main model, many homeowners, particularly old homeowners,
lose from the relaxation of housing supply constraints and the ensuing fall in house
prices. In the model without homeownership, these losses are more evenly distributed
across local residents.

The average welfare gains in the hand-to-mouth model are much smaller than in
our main model and in the no-ownership model. Not allowing households to insure
themselves by saving and borrowing lowers average welfare gains from upzoning by
one-quarter and from HSR by over two-thirds.

The variance of welfare gains is substantially larger in our main model than in the
other two models (second row), and there are far more losers from the policy in our main
model (last row). In the upzoning experiment, 34.25% of households lose in our main
model compared to a mere 0.09% in the model without homeownership and 0.02% in the
hand-to-mouth model, even though average gains are highest in the main model. In the
alternative models, real estate losses experienced by REITs, which result in lower transfers
to locals, are offset by lower rents so that nearly no one loses from the policy. In the HSR
experiment, 22.12% of the population experiences losses in our main model compared to
14.46% in the no-ownership model and 15.56% in the hand-to-mouth model, even though
average welfare gains are higher in our main model.

Simply put, homeownership increases the exposure of households to localized shocks,
such as the introduction of the HSR or the relaxation of housing supply constraints. This is
because owner-occupied housing is a spatially undiversified asset that many households
own with substantial leverage. For many households, it is also the largest asset in their
portfolios. Therefore, heterogeneity in tenure status substantially increases the dispersion
in welfare changes that households experience. Approximating homeownership by a local
REIT cannot capture the effects of homeownership.

The heterogeneity in welfare changes not only occurs in the population at large, it also
manifests itself in nearly every location. Panel A of Figure 11 shows that the upzoning ex-
periment creates a large number of losers in all locations, including in the locations where
housing supply constraints are relaxed. Surely, many homeowners in those locations are
not happy about lower house prices due to housing supply expansion. Strikingly, panel
B shows that the majority of owners lose from the policy in all but 5 locations, includ-
ing many locations not directly treated. However, in the model without homeownership
(panel C) and in the hand-to-mouth model (panel D), there are virtually no losers.

In the HSR counterfactual, there are many locations far from the HSR stations in the
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Figure 11: Spatial Distribution of Fraction Harmed, Upzoning

Panel A: Main model Panel B: Main model (owners)
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Note: The maps show the fraction of households who experience welfare losses in each location in the
upzoning counterfactual. Panels A and B show the fractions of all households and homeowners, respectively.
Panels C and D show the fractions in the model without homeownership and the hand-to-mouth model.
Bordered areas represent the locations where upzoning takes place.

northeast of the CZ where a large number of residents lose from the policy (panel A of
Figure 12). These losers are homeowners who see their property values fall when some
residents move out to live closer to the HSR. Indeed, panel B shows that many owners
outside of the four locations with stations lose from the policy, and in many locations the
fraction of losers is greater than 50 percent. However, as shown in panels C and D, in the
model without homeownership and in the hand-to-mouth model, losers are concentrated
close to the HSR. This result is driven by older renters in those areas who suffer from
higher rents but do not benefit from better connectivity brought about by the HSR.

These results suggest that a model with homeownership is well suited to rationalize
why policies targeted at expanding housing supply are often met with stiff opposition
from local residents. Our model generates that the majority of homeowners lose from
the policy in many locations. Homeowners are more active in local politics than renters
and are also more likely to vote (DiPasquale and Glaeser, 1999; Hall and Yoder, 2022).
Moreover, as shown in panel C of Figure 10, wealthy residents lose from the upzoning
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Figure 12: Spatial Distribution of Fraction Harmed, HSR

Panel A: Main model Panel B: Main model (owners)
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Note: The maps show the fraction of households who experience welfare losses in each location in the HSR
counterfactual. Panels A and B show the fractions of all households and homeowners, respectively. Panels
C and D show the fractions in the model without homeownership and the hand-to-mouth model. Bordered
areas represent the locations where HSR stations are built.

policy. If higher wealth is associated with greater political influence, wealthy homeowners
can use their economic power to thwart housing supply reforms.

Similarly, our model can account for difficulties in implementing transportation im-
provements. As panel B of Figure 12 demonstrates, the locations where the majority of
homeowners lose tend to be the neighbors of the locations that receive a station, such as
several locations in Silicon Valley and areas south of Downtown San Francisco. However,
the HSR tracks would have to pass through these locations. Our model justifies opposition
by the local residents on economic grounds.

5 Conclusion

We propose a new computational dynamic spatial equilbrium framework. Our method
solves urban models with forward-looking, risk-averse agents who face idiosyncratic
risk. They make dynamic consumption-savings decisions as well as periodic location and
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homeownership decisions. We use the model to study the transitional dynamics following
policy changes that affect some places within a city differently from others. Prominent
examples are policies that increase residential density in the urban core and improve trans-
portation infrastructure. The results indicate slow transitions and spatially heterogeneous
responses due to the presence of moving costs and a legacy stock of immobile real estate.
They also show that accounting for dynamics and homeownership is indispensable to
establish both aggregate and distributional implications of local policies and shocks.

Our approach is well-suited to study the welfare effects of place-based policies that
aim to provide social insurance to people in left-behind places, adjustment dynamics to
work-from-home shocks with local fiscal policy consequences that risk triggering an urban
doom loop (Gupta et al., 2025), and to quantitatively assess the general equilibrium impact
of neighborhood-scale urban investment projects.
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Online Appendix

A Data

Wages. We use the Census Transportation Planning Products (CTPP) database and
the ACS data for 2012–2016 to obtain estimates of average wage for each location. We
use the data reported for the period from 2012 to 2016. We use the variable “earnings in
the past 12 months (2016 $), for the workers 16-year-old and over,” which is based on the
respondents’ workplace locations. The variable provides the estimates of the number of
people in each of the several earning bins in each workplace tract.41

We calculate mean labor earnings for tract k as w̄k =
(∑

b Nb,kw̄b
)
/
∑

b Nb,k, where Nb,k

is the number of workers in bin b in tract k, and w̄b is mean earnings in bin b for each
PUMA, calculated from the ACS microdata. Next, to control for possible effects of workers’
heterogeneity on tract-level averages, we estimate

w̄k = α + β1agek + β2sexratiok +
∑

r

β2,rracer,k +
∑

d

β3,dindd,k +
∑

o

β4,oocco,k + ϵk, (A.1)

where agek is the average age; sexratiok is the proportion of males to females in local labor
force; racer, j is the share of race r ∈ {Asian,Black,Hispanic,White}; indd,k is the share of jobs
in industry d; and occo,k is share of jobs in occupation o in tract k.42 The estimated tract-level
wage index is the sum of the estimated constant and the tract fixed effect: ŵ0

k ≡ α̂+ ϵ̂k.We
then construct wage indices for each location j, ŵ0

j , as the employment-weighted average
of the values of ŵ0

k for each tract k that pertains to model location j.

Residential floorspace rents and prices. To estimate the citywide price-rent ratio, we
use the 2012–2016 ACS data. We keep only household heads to ensure that the analysis
is at the level of a residential unit. We exclude observations who live in group quarters;

41The bins are≤ $9, 999; $10, 000–$14, 999; $15, 000–$24, 999; $25, 000–$34, 999; $35, 000–$49, 999; $50, 000–
$64, 999; $65, 000–$74, 999; $75, 000–$99, 999; and ≥ $100, 000.

42We use the following industry categories: Agricultural; Armed force; Art, entertainment, recreation,
accommodation; Construction; Education, health, and social services; Finance, insurance, real estate; Infor-
mation; Manufacturing; Other services; Professional scientific management; Public administration, Retail.
We use the following occupation categories: Architecture and engineering; Armed Forces; Arts, design,
entertainment, sports, and media; Building and grounds cleaning and maintenance; Business and financial
operations specialists; Community and social service; Computer and mathematical; Construction and ex-
traction; Education, training, and library; Farmers and farm managers; Farming, fishing, and forestry; Food
preparation and serving related; Healthcare practitioners and technicians; Healthcare support; Installation,
maintenance, and repair; Legal; Life, physical, and social science; Management; Office and administrative
support; Personal care and service; Production;Protective service; Sales and related.
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live in farm houses, mobile homes, trailers, boats, tents, etc.; are younger than 20 years
old; and live in a dwelling that has no information on the year of construction. Then we
estimate the following hedonic rent and price indices for each PUMA using self-reported
housing rents and prices:

ln qι,t = β0 + β1Xι,t + φt + ει,it. (A.2)

Here, qι,it is the rent or the price reported by household ι in year t, while Xι,t is a vector
of controls that includes the number of rooms in the dwelling, the number of units in the
structure (e.g., single-family detached, 2-family building), and the year of construction.
Parameter φt is the year fixed effect, and ει,t is the error term. We then use the price and
rent indices evaluated at a median house type (single-family, detached, three bedroom),
and divide them to obtain the price-rent ratio of 26.7.

Commercial floorspace rents and prices. We use lease transaction data for office,
retail, and industrial properties located in California from the data provider CompStak,
spanning the period 2000 until 2023. We then estimate a regression of the log real rent
annual net effective per square foot on a set of ZIP code fixed effects and a series of control
variables. Net effective rent adjusts the contract rent schedule over the life of the lease for
landlord concessions (tenant improvements and free rent). The control variables include
space type (office, retail, or industrial), lease length, building age, building size (log square
feet), and building quality (A, B, or C). We then create the ZIP-code rent index as the sum
of the ZIP code FE, the average of the 2015 and 2016 time FE, for a class-A office of average
age, size, and with average lease-length structure. In a final step we aggregate up from
the ZIP code to our model locations in the Bay Area using population weights.

Commute times. The CTPP data divides commuting times into 10 bins: less than 5
minutes, 5 to 14 minutes, 15 to 19 minutes, 20 to 29 minutes, 30 to 44 minutes, 45 to 59
minutes, 60 to 74 minutes, 75 to 89 minutes, 90 or more minutes, and work from home.

First, we calculate travel time between each pair of locations as the average of all tract-
to-tract times with an origin inside one location and a destination in the other. We discard
the calculation for any pair for which fewer than 10% of all possible tract-to-tract times are
reported by CTPP. We also exclude times that imply a speed of more than 100 km/hour
or less than 5 km/hour. We perform this same calculation for the average distance of each
location from itself, obtaining data-based estimates of internal travel times.

Second, we take the primitive connections and the travel times between them, detailed
above, as the first-order connections in a transport network. We use Dĳkstra’s algorithm
to find the smallest possible travel times through this network between any pair of model
locations for which travel times cannot be calculated directly.
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Floorspace supply elasticities. We obtain housing supply elasticities ξS
i from Saiz

(2010) and Baum-Snow and Han (2023). The benefit of the former is that it provides
long-run 30-year supply elasticities, compared to 10-year elasticities in Baum-Snow and
Han (2023). The benefit of the latter is that it provides elasticities at the Census tract level,
compared to at the MSA level in Saiz (2010).

First, we take the elasticities from Saiz (2010) using the value of 0.66 for model locations
that belong to the San Francisco MSA and 0.76 for locations that belong to the San Jose
MSA. These elasticities were estimated using population changes, which means that these
are elasticities of the supply of housing units, not total floorspace. Second, we take the
2011 housing units elasticities estimated with the FMM-IV model at the tract level from
Baum-Snow and Han (2023) (variable gamma11b_units_FMM), then aggregate them to the
level of model locations and restrict the elasticites to be at least 0.05, and obtain ξBSH

i for
each model location. Third, we calculate

ξi =
ξBSH

i

ξ̄BSH
ξSaiz

i ,

where ξSaiz
i is the Saiz (2010) elasticity and ξ̄BSH is the population-weighted average Baum-

Snow and Han (2023) elasticity. This approach ensures that the average elasticity in our
model is the same as in Saiz (2010) and the variance across locations is the same as in
Baum-Snow and Han (2023)

To obtain supply elasticities in the commercial real estate sector, we use the same
procedure with the only exception that we use the total floorspace elasticity from Baum-
Snow and Han (2023) (variable gamma11b_space_FMM).
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Table A.1: Location Characteristics

Location Ni NW
j ER

i EW
j Z j ξS

i ξC
i

Alameda (North)–Berkeley and Albany Cities 72.7 73.8 0.00 0.00 1.00 0.64 0.53
Alameda (Northwest)–Oakland (Northwest) and Emeryville Cities 110.0 141.1 -0.09 -0.02 1.06 0.89 0.70
Alameda (Northeast)–Oakland (East) and Piedmont Cities 90.2 35.2 -0.02 -0.07 1.03 1.15 0.75
Alameda (North Central)–Oakland City (South Central) 63.1 18.2 -0.16 -0.09 0.94 0.65 0.59
Alameda (West)–San Leandro, Alameda and Oakland (Southwest) Cities 117.1 90.7 -0.05 -0.04 1.01 0.97 0.79
Alameda (North Central)–Castro Valley, San Lorenzo and Ashland 90.7 24.1 -0.09 -0.09 0.96 0.83 0.66
Alameda (Central)–Hayward City 96.9 62.1 -0.10 -0.05 0.96 0.94 0.75
Alameda (Southwest)–Union City, Newark and Fremont (West) Cities 96.5 96.2 -0.05 0.01 0.92 0.65 0.65
Alameda (South Central)–Fremont City (East) 131.0 39.3 0.00 -0.08 1.01 0.63 0.62
Alameda (East)–Livermore, Pleasanton and Dublin Cities 146.0 105.1 0.01 -0.02 0.99 1.01 0.77
Contra Costa (Far Southwest)–Richmond (Southwest) and San Pablo Cities 64.4 31.3 -0.18 -0.10 0.95 0.73 0.64
Contra Costa (Far Northwest)–Richmond (North), Hercules and El Cerrito Cities 80.1 24.6 -0.11 -0.09 0.96 1.01 0.69
Contra Costa (Northwest)–Concord (West), Martinez and Pleasant Hill Cities 80.8 69.0 -0.10 -0.07 1.03 1.01 0.74
Contra Costa–Walnut Creek (West), Lafayette, Orinda Cities and Moraga Town 68.9 56.3 -0.01 -0.08 1.10 2.37 1.31
Contra Costa (South)–San Ramon City and Danville Town 81.9 52.4 0.02 -0.09 1.09 2.15 1.22
Contra Costa (Central)–Concord (South), Walnut Creek (East) and Clayton Cities 71.9 40.4 -0.04 -0.10 1.06 1.13 0.78
Contra Costa (North Central)–Pittsburg and Concord (North and East) Cities 69.5 27.3 -0.15 -0.08 0.92 0.84 0.67
Contra Costa (Northeast)–Antioch City 59.7 21.3 -0.13 -0.11 0.96 0.67 0.59
Contra Costa (East)–Brentwood and Oakley Cities 59.2 14.2 -0.08 -0.09 0.93 2.06 1.28
Marin (North and West)–Novato and San Rafael (North) Cities 68.5 46.4 -0.02 -0.08 1.05 2.16 1.22
Marin (Southeast)–San Rafael (South), Mill Valley and Sausalito Cities 79.6 64.7 0.07 -0.08 1.14 1.54 0.93
Napa–Napa City 91.5 68.6 -0.03 -0.04 1.02 1.65 1.06
San Francisco (North and West)–Richmond District 103.5 67.6 0.09 -0.12 1.24 0.87 0.64
San Francisco (North and East)–North Beach and Chinatown 85.5 99.9 0.08 -0.09 1.27 1.10 0.76
San Francisco (Central)–South of Market and Potrero 94.6 354.9 0.03 -0.03 1.26 1.47 0.95
San Francisco (Central)–Inner Mission and Castro 89.4 47.6 0.07 -0.10 1.19 0.82 0.61
San Francisco (Central)–Sunset District (North) 80.9 32.6 0.05 -0.14 1.17 0.73 0.57
San Francisco (South Central)–Sunset District (South) 86.5 26.8 0.03 -0.11 1.10 0.62 0.51
San Francisco (South Central)–Bayview and Hunters Point 82.6 31.9 -0.02 -0.14 1.09 0.73 0.57
San Mateo (North Central)–Daly City, Pacifica Cities and Colma Town 105.5 28.1 -0.03 -0.12 1.09 1.01 0.69
San Mateo (North Central)–South San Francisco, San Bruno and Brisbane Cities 91.9 78.8 -0.03 -0.12 1.20 0.72 0.56
San Mateo (Central)–San Mateo (North), Burlingame and Millbrae Cities 67.2 59.9 0.08 -0.11 1.20 0.88 0.68
San Mateo (South and West)–San Mateo (South) and Half Moon Bay Cities 93.3 66.1 0.04 -0.09 1.19 1.45 0.96
San Mateo (East Central)–Redwood City, San Carlos and Belmont Cities 87.2 78.1 0.06 -0.10 1.21 0.81 0.67
San Mateo (Southeast)–Menlo Park, East Palo Alto Cities and Atherton Town 66.0 54.5 0.10 -0.14 1.30 1.19 0.87
Santa Clara (Northwest)–Mountain View, Palo Alto and Los Altos Cities 126.6 205.4 0.14 -0.05 1.26 0.84 0.77
Santa Clara (Northwest)–Sunnyvale and San Jose (North) Cities 104.6 102.2 0.03 -0.04 1.10 0.43 0.63
Santa Clara (Northwest)–San Jose (Northwest) and Santa Clara Cities 97.0 180.4 -0.01 -0.03 1.07 0.38 0.62
Santa Clara (North Central)–Milpitas and San Jose (Northeast) Cities 95.0 56.3 -0.03 -0.09 1.05 0.36 0.57
Santa Clara (North Central)–San Jose City (East Central) and Alum Rock 70.0 12.6 -0.06 -0.13 1.00 0.31 0.49
Santa Clara (East)–Gilroy, Morgan Hill and San Jose (South) Cities 66.8 29.4 -0.02 -0.10 1.00 1.10 0.89
Santa Clara (Southwest)–Cupertino, Saratoga Cities and Los Gatos Town 84.9 67.6 0.12 -0.11 1.20 0.81 0.71
Santa Clara (Central)–San Jose (West Central) and Campbell Cities 90.9 47.5 0.02 -0.09 1.09 0.31 0.55
Santa Clara (Central)–San Jose City (Northwest) 77.4 108.3 -0.06 -0.12 1.16 0.31 0.59
Santa Clara (Central)–San Jose City (Central) 99.3 45.3 -0.02 -0.13 1.11 0.31 0.50
Santa Clara (Central)–San Jose City (South Central/Branham) and Cambrian Park 74.1 24.6 -0.02 -0.13 1.06 0.31 0.46
Santa Clara (Central)–San Jose City (Southwest/Almaden Valley) 72.2 25.9 0.00 -0.16 1.12 0.31 0.46
Santa Clara (Central)–San Jose City (Southeast/Evergreen) 69.8 14.5 -0.03 -0.14 1.02 0.45 0.55
Santa Clara (Central)–San Jose City (East Central/East Valley) 61.4 20.5 -0.10 -0.14 1.05 0.31 0.53
Solano (Southwest)–Vallejo and Benicia Cities 88.3 40.9 -0.15 -0.04 0.86 0.52 0.50
Solano (Central)–Fairfield and Suisun City Cities 75.9 37.6 -0.13 -0.04 0.90 1.51 1.01
Solano (Northeast)–Vacaville and Dixon Cities 62.8 31.9 -0.12 -0.04 0.90 1.41 0.97
Sonoma (North)–Windsor Town, Healdsburg and Sonoma Cities 99.3 61.3 -0.02 0.02 0.92 2.58 1.46
Sonoma (South)–Petaluma, Rohnert Park and Cotati Cities 77.1 43.7 -0.06 -0.02 0.91 1.30 0.91
Sonoma (Central)–Santa Rosa City 109.1 74.1 -0.07 0.01 0.92 0.97 0.78

Note: The table shows the number of employed and retired residents (Ni) and workers (NW
j ) in thousands, residential and workplace

amenities (ER
i and EW

j ), total factor productivity in the traded good sector (Z j) and floorspace supply elasticities of residential and
commercial construction (ξS

i and ξC
i ) in each model location.
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B Extensions

B.1 Agglomeration Externalities

In the model presented in Section 2, the productivity of traded-good firms is an exogenous
parameter Z j. However, extensive empirical evidence suggests that local productivity
depends on employment density and it has been common in quantitative urban models to
model productivity as such. Following Ahlfeldt et al. (2015), we specify the productivity
as

Z jt = Z jLλjt,

where Z j is the exogenous component of productivity andλ is the elasticity of productivity
with respect to the efficiency units of labor in a given location.

To examine the sensitivity of our results to endogenizing productivity, we follow
existing empirical evidence (Ahlfeldt and Pietrostefani, 2019) and set λ = 0.05. Then we
re-estimate the model. Model parameters are listed in Table B.1. After that, we perform the
HSR and the upzoning counterfactuals. An attractive feature of a model with endogenous
productivity is that it makes policy counterfactuals less reliant on exogenous productivity
differences across locations. The variance of ln Z j goes down from 0.0109 in the model
without agglomeration to 0.0088 in the model with agglomeration.

Table B.1: Internally calibrated parameters, model with agglomeration

Parameter Description Value Target or source Value

ρ discount factor 0.0215 median wealth-earnings ratio 1.647
η weight of housing in utility 0.3282 median rent-to-earnings 0.240
χ preference for homeown. 1.0524 homeownership rate 0.542
ϑ0 bequest motive 0.4940 homeown., ages 80–84 vs 20–24 0.642
νR Gumbel scale, resid. shocks 2.0797 100× variance of log earnings 1.043
νW Gumbel scale, work. shocks 0.2270 p90 commute time, minutes 67.0
κ cost of commuting 0.0093 commuting gravity coeff. -0.0408
µ0 moving cost, intercept 12.5636 cross-county migration rate 0.0224
µa moving cost, age coeff. 0.1523 migration, ages 20–24 vs 80–84 0.0853

Note: The table describes internally calibrated parameters in the model with agglomeration externalities.
See the text for more details.

Figure B.1 compares local long-run changes in residents and jobs in the baseline version
of the model that we described in Section 4 and the changes in the version with endogenous
productivity. We can see that changes in jobs are somewhat larger in the version of
the model with agglomeration externalities but the ranking of locations by job gains is
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Figure B.1: Effect of agglomeration externalities on spatial reallocation

Panel A: Upzoning Panel B: HSR
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Note: The figure compares local changes in residents and jobs between the baseline version of the model and
the version with endogenous productivity in the upzoning (panel A) and the HSR (panel B) counterfactuals.
The solid diagonal line is the 45-degree line.

preserved. That is, including agglomeration externalities slightly amplifies the effects of
the HSR and upzoning on job changes but does not lead to any qualitative differences. At
the same time, changes in residents are only indirectly affected by agglomeration forces
and, therefore, are nearly identical regardless of whether productivity is endogenous
or not. We also checked that the difference between welfare gains in both types of
counterfactuals is negligible.

B.2 Frequency of Shock Ages

In our baseline calibration, we set the frequency of shock ages to 1 year. In this section,
we examine how sensitive our results are to the frequency of shock ages. To do this, we
repeat our main analysis when shock ages are 1/2 years apart instead of 1 year. We first
re-calibrate the model. Table B.2 shows the values of internally calibrated parameters.
The calibration of the model with 1/2-year shock ages requires different moving costs to
obtain the same implied annual migration rates.

We then run the same upzoning and HSR counterfactuals as in Section 4. Figure B.2
compares long-run reallocations of residents and jobs in both counterfactuals using each
model. Our overall conclusion is that the results are very similar. The transition dynamics
are slightly slower than in the benchmark model. The longer transitions occur because
the “directedness" of moves is lower. One could recalibrate νR and νW to avoid this, but
the change is small.
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Table B.2: Internally calibrated parameters, shock ages 1/2 years apart

Parameter Description Value Target or source Value

ρ discount factor 0.0222 median wealth-earnings ratio 1.647
η weight of housing in utility 0.3229 median rent-to-earnings 0.240
χ preference for homeown. 1.0551 homeownership rate 0.542
ϑ0 bequest motive 0.3693 homeown., ages 80–84 vs 20–24 0.642
νR Gumbel scale, resid. shocks 2.0061 100× variance of log earnings 1.043
νW Gumbel scale, work. shocks 0.1827 p90 commute time, minutes 67.0
κ cost of commuting 0.0075 commuting gravity coeff. -0.0408
µ0 moving cost, intercept 13.5481 cross-county migration rate 0.0112
µa moving cost, age coeff. 0.1453 migration, ages 20–24 vs 80–84 0.0427

Note: The table describes internally calibrated parameters in the model where shock ages happen every half
a year. See the text for more details.

Figure B.2: Spatial reallocation, main model vs model with shock ages 1/2 years apart

Panel A: Upzoning Panel B: HSR
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Note: The figure compares local changes in residents and jobs between the baseline version of the model and
the version with shock ages 1/2 years apart in the upzoning (panel A) and the HSR (panel B) counterfactuals.
The solid diagonal line is the 45-degree line.

B.3 No Homeownership Model

Existing quantitative urban models sometimes attempt to account for homeownership by
assuming that housing is owned by local REITs, which redistribute rents to local residents
(Redding and Rossi-Hansberg, 2017). Following this approach, we develop a version of
our model that proxies for homeownership in this way but does not have tenure choice.

The household problem is similar to that in the main model, except that (i) households
rent housing, and (ii) residents of location i receive a transfer Tit from REITs. There are
three kinds of REITS: local residential REITs, a spatially diversified residential REIT, and
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a commercial REIT. Local residential REITs own fraction F LS = 0.6087 of the residential
real estate in location i, the same as the fraction of residential real estate value that is
owner-occupied in the main model. The remaining residential real estate is owned by the
spatially diversified residential REIT. As in the main model, the commercial REIT is also
diversified across space.

As in the main model, the rent charged by REITs is such that the (ex-ante) return on
real estate investments is q:

rm
it = (q + δ + τh)pm

it − ṗm
it

Note that this implies that, in the initial steady state, the present value of rents less taxes
on a unit of floorspace equals the cost of constructing it:

pm,ss
i =

∫
∞

0
e−(q+δ)s(q + δ)pm,ss

i ds (B.1)

=

∫
∞

0
e−(q+δ)s(rm,ss

i − τhpm,ss
i )ds (B.2)

After an unexpected shock, the present value of pre-shock floorspace will in general not
equal the cost paid to construct it:

pm,ss
i Hm,ss

i = Hm,ss
i

∫
∞

0
e−(q+δ)s(q + δ)pm,ss

i ds (B.3)

, Hm,ss
i

∫
∞

0
e−(q+δ)s(rm

is − τ
hpm

is )ds (B.4)

= Hm,ss
i

∫
∞

0
e−(q+δ)s[(q + δ)pm

is − ṗm
is ]ds (B.5)

Denote the excess return earned on sector-m floorspace in i after an unexpected shock by

Πm
it = Hm,ss

i e−(q+δ)t[(q + δ)(pm
it − pm,ss

i ) − ṗm
it ] (B.6)

Note that the present value of excess returns equals the capital gain caused by the shock:∫
∞

0
Πm

it dt = Hm,ss
i (pm

i0 − pm,ss
i ). (B.7)

As is standard in quantitative urban models, we assume that local residents own equal
shares of their local residential REIT. The per-household transfer in location i from the
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local residential REIT is therefore

T
LS
it =

F
LSΠS

it

NR
it

(B.8)

where NR
it is the population of location i.

Households in the model own fraction F DS = 0.0529 of the spatially diversified resi-
dential REIT and fraction F C = 0.0199 of the commercial REIT. These are set to the same
fractions of real estate value that are held by households in the main model. Households
own equal shares of the spatially diversified REITs. The per-household transfer from the
spatially diversified residential REIT is

T
DS
t = F DS(1 − F LS)

∑
i

ΠS
it. (B.9)

The per-household transfer from the commercial REIT is

T
C
t = F

C
∑

i

ΠC
it . (B.10)

The total transfer from REITs in location i is

Tit = T
LS
it + T

DS
t + T C

t (B.11)

We impose a preference for homeownership χ = 0 so that it is never optimal to own
a house of any size. We continue to allow individuals to save in the risk-free asset.
We re-estimate the parameters of the quantitative model using the same approach as in
Section 3, with two exceptions. First, we fix the parameters (ρ, ϑ0, ϑ1), calibrated from
wealth moments, to their benchmark model values. Second, we apply the calibrated
value for the maximum owner-occupied house size (maxH) to rental housing in the no-
ownership model to ensure that our results are not driven by differences in feasible housing
consumption. All other parameters are re-estimated to give the no-homeownership model
the best shot. Table B.3 reports the resulting parameters for the no-homeownership model.

Then we rerun the upzoning and the HSR counterfactuals. Figure B.3 shows that the
magnitudes of local changes in residents and jobs between the old and the new steady
states are nearly the same as in the main model. We also compare transition speeds
in both models. In the main model, the transition of residential population halfway
to the counterfactual steady state takes 9.5 years for an average location in the upzoning
counterfactual and 10.4 years in the HSR counterfactual. In the no-homeownership model,
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Table B.3: Internally calibrated parameters, model without homeownership

Parameter Description Value Target or source Value

η weight of housing in utility 0.3091 median rent-to-earnings 0.240
νR Gumbel scale, resid. shocks 2.2748 100× variance of log earnings 1.043
νW Gumbel scale, work. shocks 0.2257 p90 commute time, minutes 67.0
κ cost of commuting 0.0092 commuting gravity coeff. -0.0408
µ0 moving cost, intercept 13.7158 cross-county migration rate 0.0224
µa moving cost, age coeff. 0.1708 migration, ages 20–24 vs 80–84 0.0853

Note: The table describes internally calibrated parameters of the model without homeownership. See the
text for more details.

Figure B.3: Spatial reallocation in the main model and the model without homeownership

Panel A: Upzoning Panel B: HSR
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Note: The figure compares local changes in residents and jobs between the baseline version of the model
and the version without homeownership in the upzoning (panel A) and the HSR (panel B) counterfactuals.
The solid diagonal line is the 45-degree line.

these numbers are 9.7 and 10.1 years, respectively. That is, transitions have similar speeds
in both types of models despite the fact that the model without homeownership is missing
an important impediment to migration–the housing transaction cost. The reason is because
the parameters of the no-ownership model are re-estimated to match the same empirical
data moments. In particular, the parameters that describe moving costs (µ0 and µa) and
residential location preferences (νR) are higher than in the main model. The higher moving
costs in the no-ownership model naturally slow down transitions in that model.
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B.4 Hand-to-Mouth Model

Finally, we develop a version of our model where households are not allowed to save and
borrow. The model is the same as the no-homeownership described above, except that
households consume their income every period; there are no savings or bequests.

Table B.4: Internally calibrated parameters, hand-to-mouth model

Parameter Description Value Target or source Value

η weight of housing in utility 0.2924 median rent-to-earnings 0.240
νR Gumbel scale, resid. shocks 0.8746 100× variance of log earnings 1.043
νW Gumbel scale, work. shocks 0.0543 p90 commute time, minutes 67.0
κ cost of commuting 0.0022 commuting gravity coeff. -0.0408
µ0 moving cost, intercept 5.2742 cross-county migration rate 0.0224
µa moving cost, age coeff. 0.0657 migration, ages 20–24 vs 80–84 0.0853

Note: The table describes internally calibrated parameters of the hand-to-mouth model. See the text for
more details.

As Table B.4 demonstrates, not allowing for saving and borrowing behavior leads to
substantial differences in parameter values. In particular, we calibrate much lower scale
parameters for the distributions of residence and workplace preferences. When consump-
tion smoothing is not possible, fundamental features of locations are more important than
idiosyncratic preferences of households. We also calibrate much lower commuting and
migration costs. When insurance against shocks is not available, it must be less costly for
households to commute and relocate in order to rationalize the migration rates that we
observe in the data.

Despite the differences in parameter values, the magnitudes of resident and job move-
ments are reasonably similar in the upzoning counterfactual, as can be seen in panel A of
Figure B.4. However, as shown in panel B, the model with hand-to-mouth agents strongly
underpredicts the extent of spatial relocation in the HSR experiment.
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Figure B.4: Spatial reallocation in the main model and the hand-to-mouth model

Panel A: Upzoning Panel B: HSR
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Note: The figure compares local changes in residents and jobs between the baseline version of the model
and the the hand-to-mouth model in the upzoning (panel A) and the HSR (panel B) counterfactuals. The
solid diagonal line is the 45-degree line.
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C Computational Appendix

C.1 Solving the Household’s Problem

We solve the household’s problem using the finite differences method described by
Achdou, Han, Lasry, Lions and Moll (2022). For each house size h ∈ H, we make a
grid for liquid wealth b with lower bound b(h) and upper bound b(h). We verify ex-post
that the lower bounds are always less than or equal to the collateral constraint (that is,
b(h) ≤ mini,t{−ϕpith}) and that the upper bounds do not bind. We use unevenly spaced
grids for liquid wealth, with nodes concentrated near the lower bound. We discretize id-
iosyncratic individual labor productivity ζ using Rouwenhorst’s method (Rouwenhorst,
1995; Kopecky and Suen, 2010). We discretize wages using an evenly spaced grid with
lower bound w and upper bound w. We verify ex-post that w ≤ min j,t w jt and w ≥ max j,t w jt.
Finally, we discretize age using an evenly spaced grid with intervals ∆. 43

Given the value function at the maximum age, Vt(b, h, i,w, ζ,A) = v(b+(1−ψ)pith), we use
the finite differences algorithm to solve the HJB equation (2.5) for Vt−∆(b, h, i,w, ζ,A − ∆).
Repeating this n times yields the value function immediately after the last shock age,
limι↓0 Vt−1+ι(b, h, i,w, ζ,A−1+ ι). Evaluating equations (2.6) - (2.9) yields the value function
at the last shock age, Vt−1(b, h, i,w, ζ,A − 1).

We use linear interpolation to evaluate wage values between wage gridpoints for
equation (2.6) and liquid wealth values between liquid wealth gridpoints for equations
(2.7) and (2.8). The conditional expectation in equation (2.9) is calculated using the
transition matrix given by Rouwenhorst’s method. We iterate backwards in this fashion
from age A to 0 to obtain the full discretized value and policy functions.

Given the density of state variables at age 0, gt(b, h, i,w, ζ, 0) (described in Section 2.1.9),
we use the finite differences algorithm to solve the Kolmogorov Forward equation (2.10) for
gt+∆(b, h, i,w, ζ,∆). Repeating this n times yields the density of state variables immediately
before the first shock age, limι↓0 Vt+1−ι(b, h, i,w, ζ, 1− ι). Evaluating equations (2.11) - (2.16)
yields the density of state variables at the first shock age, gt+1(b, h, i,w, ζ, 1). We use linear
interpolation to assign mass that falls between wage and liquid wealth gridpoints to the
adjoining nodes. We iterate forward in this fashion from age 0 to A to obtain the full
discretized density of state variables.

43We require ∆ = 1/m for some integer m, so that shock ages occur every m steps on the age grid. In
practice, we set ∆ = 1 in the main model and ∆ = 1/2 in the version of the model with shock ages every half
a year.
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C.2 Computing Stationary Equilibria

Given parameters, we compute stationary equilibria using the following algorithm:

1. Guess labor allocations L0
i and residential rents r0

Si. Total labor supply is normalized
to 1, so this guess must satisfy

∑I
i=1 L0

i = 1 and L0
i > 0.

2. In a stationary equilibrium, construction is strictly positive and so rCj = rCj(HCj/HCj0)1/ξC
j .

Rearranging yields a supply equation for commercial floorspace: HCj = (rCj/rCj)
ξC

j HCj0.
Subtract this from the commercial floorspace demand equation (2.23) to get the ex-
cess demand function

f (rCj) = [(1 − α)Z j/rCj]1/αL0
j − (rCj/rCj)

ξC
j HCj0

Solve these (independent) nonlinear equations for market-clearing commercial rents
rCj.44 Given HCj, compute wages using equation (2.17).

3. Use the algorithm described in Section C.1 to solve the household problem and
compute the density of state variables. Then use equations (2.20) and (2.22) to
compute labor and population allocations L j and NR

i . Since construction is strictly
positive, residential rents are rSi = rSi(NR

i /N
R
i0)1/ξS

i (see equation 3.4).

4. If max j |L0
j −L j| < ϵ and maxi |r0

Si−rSi| < ϵ for the numerical tolerance parameter ϵ > 0,
stop. Otherwise, update the guesses for L j and rSi using

L0
j = L0

j + ∇(L j − L0
j ),

r0
Si = r0

Si + ∇(rSi − r0
Si).

where ∇ ∈ (0, 1] is a dampening parameter, and return to step (2). Note that by
construction, L0

i always satisfies the criteria mentioned in step (1).

C.3 Computing Transitions

In this section, we describe our algorithm for computing transition dynamics after an
unexpected shock. In all of our exercises, the economy is in an initial steady state at t = 0,
and eventually converges to a new steady state after the shock. We discretize calendar
time using an evenly spaced grid with lower bound 0, upper bound T, and interval length

44Even when the number of locations is large, this can be done quickly using a standard nonlinear solver.
We use Matlab’s fsolve function.
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equal to the one used to discretize age (∆). We verify ex-post that T is sufficiently large
that the economy has approximately converged to its new steady state by time T.

Our algorithm for computing transition dynamics is closely related to the one used to
compute stationary equilibria. There are two main differences. The first is that we need to
compute paths of prices, instead of a single price, for each market. The second is that, on a
transition path, the construction irreversibility constraint may bind for a period of time in
some locations. In this case, floorspace prices are not pinned down by construction costs,
and we have to find prices at which demand equals the non-depreciated floorspace stock.
For what follows, define the indicator functions 1m

it , which is 1 if sector-m construction is
strictly positive in i at time t, and 0 otherwise. Our algorithm for computing transition
dynamics is as follows:

1. Compute the initial and final stationary equilibria using the algorithm described in
Section C.2.

2. Guess labor allocations L0
it, residential rents r0

Sit, and the residential construction
indicator 1S0

it . Total labor supply is normalized to 1, so this guess must satisfy∑I
i=1 L0

it = 1 and L0
it > 0.45

3. Guess the commercial commercial floorspace construction indicator 1C0
it .

(a) Compute market-clearing commercial rents conditional on 1C0
it . Commercial

floorspace demand, given by equation (2.23), is HCit(rCjt) = [(1 − α)Z j/rCjt]L0
jt.

Commercial floorspace supply satisfies equation (3.5) when construction is
positive, and falls at the rate of depreciation when construction is 0:

Hsup
Cit (rCit) =


(rCit/rCi)ξ

C
i Hss

Ci0 if 1C0
it = 1,

Hss
Ci0 if 1C0

it = 0 and t = 0,

(1 − δ∆)Hsup
Cit−∆(rCit) if 1C0

it = 0 and t > 0.

The excess demand function implied by 1C0
it is:

f (rCjt) = HCit(rCjt) −Hsup
Cit (rCit)

Solve this system of equations for market-clearing commercial rents rCjt. Even

45We use the initial guess 1S0
it = 1 and x0

jt = e−ιtxss
j0 + (1 − e−ιt)xss

jT for x ∈ {L, rS}, where xss
0 and xss

T indicate
initial- and long-run steady state values, respectively. This ensures that our guess converges to the long-run
equilibrium. We find that ι = 0.2 yields a good initial guess.

65



when the number of locations and time periods is large, this can be done quickly
using a standard nonlinear solver. We use Matlab’s fsolve function.

(b) Given HCit and L0
it, compute wages using equation (2.17).

(c) Update the commercial construction indicator. First compute commercial con-
struction demand:

Yh
Cit =

HCi0 −Hss
Ci0 if t = 0,

(HCit −HCit−∆)/∆ + δ∆HCit−∆ if t > 0.

Then update the commercial construction indicator using

1C
it =


1 if 1C0

it = 0 and pCit > 1/Zh
Cit,

0 if 1C0
it = 1 and Yh

Cit < 0,

1C0
it otherwise.

In the first case, the price at which demand equals supply with no construction
exceeds the construction cost 1/Zh

Cit. This is not an equilibrium outcome, as com-
mercial construction firms would strictly prefer to construct more floorspace.
In the second case, when commercial rents are determined by construction
costs (rCit = rCit(1/Zh

Cit)) negative construction is demanded. This is also not
an equilibrium outcome because it violates the irreversible construction con-
straint. In these cases, and only these cases, the construction indicator needs to
be changed.
If 1C

it = 1C0
it for all (i, t), proceed to step (4). Otherwise, set 1C0

it = 1C
it and return to

step (3a).

4. Given the value function at time T from the final steady state, use the finite differences
algorithm to solve the HJB equation (2.5) for the value function at time T − ∆. After
computing the HJB equation, evaluate equations (2.6) - (2.9) at all shock ages. Iterate
backward from t = T to t = 0 to obtain the value and policy functions over the entire
transition.

Given the density of state variables at time 0 from the initial steady state, use the
finite differences algorithm to solve the Kolmogorov Forward equation (2.10) for the
density of state variables at time ∆. Evaluate equations (2.11) - (2.16) at all shock
ages. Iterate forward from t = 0 to t = T to obtain the density of state variables over
the entire transition. Then use equations (2.20) - (2.22) to compute labor allocations
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L jt, population allocations NR
it , and residential floorspace demands HSit.

5. Residential floorspace supply equals demand when construction is positive, and
falls at the rate of depreciation when construction is 0. Compute the residential
floorspace supply implied by 1S0

it :

Hsup
Sit =


HSit if 1S0

it = 1,

Hss
Si0 if 1S0

it = 0 and t = 0,

(1 − δ∆)Hsup
Sit−∆ if 1S0

it = 0 and t > 0.

Residential floorspace market clearing requires that supply equals demand and rSit =

rSi(Nit/Nss
i0)1/ξS

i if construction is positive. Compute the market-clearing residential
rent implied by 1S0

it and r0
Sit:

rSit =

r0
SitHSit/H

sup
Sit if 1S0

it = 0,

rSi(Nit/Nss
i0)1/ξS

i if 1S0
it = 1.

If maxi,t |L0
it − Lit| < ϵ and maxi,t |r0

Sit − rSit| < ϵ for the numerical tolerance parameter
ϵ > 0, proceed to step (6). Otherwise, update the guesses for Lit and rSit using

L0
it = L0

it + ∇(Lit − L0
it),

r0
Sit = r0

Sit + ∇(rSit − r0
Sit).

where ∇ ∈ (0, 1] is a dampening parameter, and return to step (3).

6. Compute residential construction demand:

Yh
Sit =

HSi0 −Hss
Si0 if t = 0,

(HSit −HSit−∆)/∆ + δ∆HSit−∆ if t > 0.

Then update the residential construction indicator using the same logic described
in step 3(c):

1S
it =


1 if 1S0

it = 0 and pSit > 1/Zh
Sit,

0 if 1S0
it = 1 and Yh

Sit < 0,

1S0
it otherwise.

If 1S
it = 1S0

it for all (i, t), stop. Otherwise, set 1S0
it = 1S

it and return to step (3).
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C.4 Estimation

In this section, we describe our algorithm for estimating the model. The estimated pa-
rameters can be grouped into three categories: the vector of economy-wide parameters
Θ = (ρ, η, χ, ϑ0, νR, νW, κ, µ0, µa), the vectors of location-specific amenities (ER

i ,E
W
j ), and

the vectors of location-specific productivities (Z j,ZS
i ,Z

C
j ). In total, there are 9 + 5I = 284

parameters to estimate. However, as discussed below, productivities can be read directly
from data. In addition, without loss of generality, we normalize each amenity in location 1
to 0. As a result, there are 9+2(I−1) = 117 parameters that must be numerically estimated.

As discussed in Section 3.2, there is one target for each estimated parameter. In
principle, we could use a derivative-based method to find parameter values that match
these targets. However, given the large number of parameters to estimate, this would
be prohibitively expensive. Instead, we take advantage of two facts to develop a more
efficient algorithm.

First, it turns out that the economy-wide parametersΘ and location-specific amenities
(ER

i ,E
W
j ) have virtually independent effects on the objective function. Specifically,Θ affects

the moments listed in Table 1 but has little effect on labor and population allocations.
In contrast, amenities affect labor and population allocations but have little effect on the
moments listed in Table 1.

Second, labor and population allocations respond smoothly to changes in amenities. As
a result, we can estimate the relatively small vector Θ using a derivative-based algorithm,
and the much larger vectors of amenities using a derivate-free method. Our estimation
algorithm is as follows:

1. Guess (Θ,ER
i ,E

W
j ).

2. Use the algorithm described in Section C.1 to solve steady state conditional on
parameters and observed prices. If labor and population allocations match the data
to within a numerical tolerance of ϵ > 0, proceed to step (3). Otherwise, update
amenities using

ER
i =ER

i + ∇(NR
i

data
−NR

i )

EW
j =EW

j + ∇(NW
j

data
−NW

j )

for i, j > 1 where ∇ > 0 is an ad-hoc updating parameter, and repeat this step. In the
previous expression, NR

i is residential population in location i and NW
j is employment

in location j.
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3. Use a Newton-based method to find a Θ that matches the estimation targets listed
in Table 3.2 to within ϵ. We use Matlab’s fsolve function. For increased efficiency,
use parallelized code to compute the Jacobian at each updating step.

4. If labor and population allocations match the data to within ϵ for the estimated Θ,
proceed to step (5). Otherwise, return to step (2).

5. Use equation (2.17), (3.4), and (3.5) to back out productivities (Z j,ZS
i ,Z

C
j ) that match

observed wages, residential rents, and commercial rents given model-implied labor
allocations and floorspace quantities.

C.5 Computing Time

Table C.1 shows the amount of time required to complete each of the steps of our quan-
titative exercises. These include estimating the model, computing the long-run steady
state after an unexpected shock, and computing the transition path between the initial
and long-run steady states. In the first column, we also report the amount of time it takes
to compute the steady state of the model given parameters and prices (that is, a partial
equilibrium steady state). The model only needs to be estimated once, as the initial steady
state is the same for both of our main counterfactuals. The time required to compute the
long-run steady state and transition dynamics is similar for the transportation improve-
ment and upzoning counterfactuals. It takes just over 45 minutes to estimate the model,
and a little less than 3 hours to solve the counterfactuals we consider.

Table C.1: Computation Time

Steady State: P.E. Estimation Steady State: GE Transition
Transportation 27.21 sec. 46.60 min. 7.18 min. 2.85 hours
Upzoning " " " " 8.56 min. 2.50 hours

Note: The table shows the time required to complete the tasks required for our quantitative exercises. Each
of these steps was performed using an Amazon Elastic Compute Cloud (EC2) m5.16xlarge instance. This
instance has 64 virtual CPUs and 256 GB of RAM.

In Table C.2, we compare the computational time required to solve a partial equilibrium
steady state of the model in commuting zones with varying numbers of locations. For
commuting zones with fewer than 55 locations, this task takes less than 20 seconds on a
personal computer. For the largest commuting zone (New York, which has 183 locations
and 33,489 locations pairs), solving a partial equilibrium steady state requires a little less
than 3 minutes. Figure 2 shows the relationship between computation time for the partial
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equilibrium steady-state and number of locations. Importantly, even though the size of the
state space grows quadratically with the number of locations, computational time grows
nearly linearly. This is due to the fact that wage is a sufficient state variable for workplace
between shock ages. As a result, it is possible to use our model to study cities with tens of
thousands of location pairs.

Table C.2: Time to Compute Steady State: Partial Equilibrium

Commuting zone Locations Location pairs Time to solve
Portland 18 324 7.63 sec.
Seattle 33 1,089 11.44 sec.
San Francisco 55 3,025 20.29 sec.
Los Angeles 123 15,129 1.13 min.
New York 183 33,489 2.91 min.

Note: The table shows the time required to compute a steady state of the model given prices and
parameters for cities with varying numbers of locations. These times were obtained using a MacBook Pro
laptop with 1.4 GHz Intel core 1.5 processor.
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